COL5A2 gene
collagen type V alpha 2 chain

Normal Function

The *COL5A2* gene provides instructions for making a component of type V collagen. Collagens are a family of proteins that strengthen and support many tissues in the body, including skin, ligaments, bones, tendons, and muscles.

A component of type V collagen called the pro-α2(V) chain is produced from the *COL5A2* gene. Collagens begin as rope-like procollagen molecules that are each made up of three chains. Two combinations of chains can produce type V collagen: three pro-α1(V) chains (produced from the *COL5A1* gene) or two pro-α1(V) chains and one pro-α2(V) chain.

The triple-stranded procollagen molecules are processed by enzymes outside the cell to create mature collagen. The collagen molecules then arrange themselves into long, thin fibrils with another form of collagen, type I. Type V collagen regulates the width (diameter) of those fibrils. Studies suggest that type V collagen also controls the assembly of other types of collagen into fibrils in several tissues.

Health Conditions Related to Genetic Changes

Ehlers-Danlos syndrome

Mutations in the *COL5A2* gene have been identified in a small number of people with a form of Ehlers-Danlos syndrome called the classical type. Ehlers-Danlos syndrome is a group of disorders that affect the connective tissues that support the skin, bones, blood vessels, and many other organs and tissues. This form of the disorder is characterized by skin that is soft, highly stretchy (elastic), and fragile; abnormal scarring; and an unusually large range of joint movement (hypermobility). About 20 *COL5A2* gene mutations have been identified in people with classical Ehlers-Danlos syndrome. These mutations, which affect one copy of the gene in each cell, change the structure of the pro-α2(V) chain. As a result, fibrils containing type V and type I collagens are disorganized and larger than usual. Researchers believe that the abnormal collagen weakens connective tissues throughout the body, which causes the signs and symptoms of classical Ehlers-Danlos syndrome.
Chromosomal Location

Cytogenetic Location: 2q32.2, which is the long (q) arm of chromosome 2 at position 32.2

Molecular Location: base pairs 189,031,898 to 189,225,301 on chromosome 2 (Homo sapiens Updated Annotation Release 109.20200522, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

• AB collagen
• CO5A2_HUMAN
• collagen type V alpha 2
• collagen V, alpha-2 polypeptide
• collagen, fetal membrane, A polypeptide
• collagen, type V, alpha 2

Additional Information & Resources

Educational Resources

 https://www.ncbi.nlm.nih.gov/books/NBK21582/

Clinical Information from GeneReviews

• Classic Ehlers-Danlos Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1244

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28COL5A2%5BTIAB%5D%29+OR+%28AB+collagen%5BTIAB%5D%29+OR+%28collagen%5BTI%5D%29+AND+type+V+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22+AND+1800+days%5Bdp%5D
Catalog of Genes and Diseases from OMIM

- COLLAGEN, TYPE V, ALPHA-2
 http://omim.org/entry/120190

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_COL5A2.html

- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=COL5A2%5Bgene%5D

- Ehlers-Danlos Syndrome Variant Database
 https://eds.gene.le.ac.uk/home.php?select_db=COL5A2

- HGNC Gene Symbol Report

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:1290

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/P05997

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9783710
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1051462/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23587214
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653713/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22696272

Reprinted from Genetics Home Reference:

Reviewed: November 2017
Published: August 17, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services