COL4A3 gene
collagen type IV alpha 3 chain

Normal Function

The *COL4A3* gene provides instructions for making one component of type IV collagen, which is a flexible protein. Specifically, this gene makes the alpha3(IV) chain of type IV collagen. This chain combines with two other types of alpha (IV) chains (the alpha4 and alpha5 chains) to make a complete type IV collagen molecule. Type IV collagen molecules attach to each other to form complex protein networks. These networks make up a large portion of basement membranes, which are thin sheet-like structures that separate and support cells in many tissues. Type IV collagen alpha3-4-5 networks play an especially important role in the basement membranes of the kidney, inner ear, and eye.

Health Conditions Related to Genetic Changes

Alport syndrome

More than 40 mutations in the *COL4A3* gene have been found to cause Alport syndrome. Most of these mutations change single protein building blocks (amino acids) in a region where the alpha3(IV) collagen chain combines with other type IV collagen chains. Other mutations in the *COL4A3* gene severely decrease or prevent the production of alpha3(IV) chains. As a result, there is a serious deficiency of the type IV collagen alpha3-4-5 network in the basement membranes of the kidney, inner ear, and eye. In the kidney, other types of collagen accumulate in the basement membranes, eventually leading to scarring of the kidneys and kidney failure. Mutations in this gene can also lead to abnormal function in the inner ear, resulting in hearing loss.

Keratoconus

Other disorders

Mutations in the *COL4A3* gene have been found to cause thin basement membrane nephropathy. This condition typically causes people to have blood in their urine (hematuria) but no other signs or symptoms of kidney disease. In the past, this condition was often called benign familial hematuria. Thin basement membrane nephropathy rarely progresses to kidney failure.

Goodpasture syndrome is a severe disease of the lungs and the kidneys caused by antibodies to the alpha3(IV) collagen chains. Antibodies are immune system proteins that normally attack foreign substances such as bacteria or viruses, but in
Goodpasture syndrome, they target alpha3(IV) collagen chains. It remains unclear why some people make antibodies to their own collagen chains. The antibodies cause inflammation when they attach (bind) to the basement membranes of blood vessels in the air sacs (alveoli) of the lungs and filtering units (glomeruli) of the kidneys. As a result, people with Goodpasture syndrome can develop kidney failure and bleeding in the lungs, which causes them to cough up blood. In some people, antibodies attack only the kidneys. These people are said to have anti-glomerular basement membrane nephritis.

Chromosomal Location

Cytogenetic Location: 2q36.3, which is the long (q) arm of chromosome 2 at position 36.3

Molecular Location: base pairs 227,164,565 to 227,314,792 on chromosome 2 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- CO4A3_HUMAN
- collagen IV, alpha-3 polypeptide
- collagen type IV alpha 3
- collagen, type IV, alpha 3 (Goodpasture antigen)
- Goodpasture antigen
- TUMSTATIN

Additional Information & Resources

Educational Resources

 https://www.ncbi.nlm.nih.gov/books/NBK26810/?rendertype=figure&id=A3581
 https://www.ncbi.nlm.nih.gov/books/NBK26810/#A3583
Clinical Information from GeneReviews

• Alport Syndrome and Thin Basement Membrane Nephropathy
 https://www.ncbi.nlm.nih.gov/books/NBK1207

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28COL4A3%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22+AND+COL4A3+AND+human%5Bmh%5D

Catalog of Genes and Diseases from OMIM

• COLLAGEN, TYPE IV, ALPHA-3
 http://omim.org/entry/120070

• GOODPASTURE SYNDROME
 http://omim.org/entry/233450

• HEMATURIA, BENIGN FAMILIAL
 http://omim.org/entry/141200

Research Resources

• Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC.COL4A3.html

• ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=COL4A3%5Bgene%5D

• HGNC Gene Symbol Report

• Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:1285

• NCBI Gene

• UniProt
 https://www.uniprot.org/uniprot/Q01955
Sources for This Summary

• OMIM: COLLAGEN, TYPE IV, ALPHA-3
 http://omim.org/entry/120070

• Frascà GM, Onetti-Muda A, Mari F, Longo I, Scala E, Pescucci C, Roccatello D, Alpa M, Coppo R,
 Thin glomerular basement membrane disease: clinical significance of a morphological diagnosis--
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15618242

• Gregory MC. The clinical features of thin basement membrane nephropathy. Semin Nephrol. 2005
 May;25(3):140-5. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15880323

• Kashtan CE. Alport Syndrome and Thin Basement Membrane Nephropathy. 2001 Aug 28 [updated
 2015 Nov 25]. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJJ, Bird TD,
 Ledbetter N, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA):
 NBK1207/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301386

• Kashtan CE. Alport syndrome. An inherited disorder of renal, ocular, and cochlear basement
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10499074

 Miglietti N, Bresin E, Renieri A. Autosomal-dominant Alport syndrome: natural history of a disease
 due to COL4A3 or COL4A4 gene. Kidney Int. 2004 May;65(5):1598-603.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15086897

 Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15880327

 Gregoric A, Kaplan-Pavlovic S, Ravnik-Gravac M, Glavic D. Sixteen novel mutations identified
 in COL4A3, COL4A4, and COL4A5 genes in Slovenian families with Alport syndrome and benign
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17396119

• Tazón Vega B, Badenas C, Ars E, Lens X, Milà M, Darnell A, Torra R. Autosomal recessive Alport's
 syndrome and benign familial hematuria are collagen type IV diseases. Am J Kidney Dis. 2003 Nov;
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14582039

• Wang YY, Rana K, Tonna S, Lin T, Sin L, Savige J. COL4A3 mutations and their clinical
 786-90.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14871398

Reprinted from Genetics Home Reference:

page 4