COL1A2 gene
collagen type I alpha 2 chain

Normal Function

The COL1A2 gene provides instructions for making part of a large molecule called type I collagen. Collagens are a family of proteins that strengthen and support many tissues in the body, including cartilage, bone, tendon, skin, and the white part of the eye (the sclera). Type I collagen is the most abundant form of collagen in the human body.

A component of type I collagen called the pro-α2(I) chain is produced from the COL1A2 gene. Collagens begin as rope-like procollagen molecules that are each made up of three chains. Type I collagen is composed of two pro-α1(I) chains (which are produced from the COL1A1 gene) and one pro-α2(I) chain.

The triple-stranded procollagen molecules are processed by enzymes outside the cell to create mature collagen. The collagen molecules then arrange themselves into long, thin fibrils that form stable interactions (cross-links) with one another in the spaces between cells. The cross-links result in the formation of very strong type I collagen fibers.

Health Conditions Related to Genetic Changes

Ehlers-Danlos syndrome

Several mutations in the COL1A2 gene can cause a form of Ehlers-Danlos syndrome known as the arthrochalasia type. Ehlers-Danlos syndrome is a group of disorders that affect the connective tissues that support the skin, bones, blood vessels, and many other organs and tissues. The arthrochalasia type is characterized by an unusually large range of joint movement (hypermobility) and dislocations of both hips at birth. The genetic changes, which affect one copy of the COL1A2 gene in each cell, lead to the production of a pro-α2(I) chain that is missing a critical segment. The absence of this segment interferes with the assembly and processing of pro-α2(I) chains into mature type I collagen molecules. These changes mainly affect tissues that are rich in type I collagen, such as the skin, bones, and tendons.

Rarely, mutations in both copies of the COL1A2 gene in each cell have been reported in people with a form of Ehlers-Danlos syndrome described as the cardiac-valvular type. This rare condition is characterized by abnormalities of the valves in the heart, highly stretchy (elastic) skin, and joint hypermobility. The mutations that cause this form of the disorder prevent cells from producing any normal pro-α2(I) chains. As a result, type I collagen fibrils in the skin and other tissues cannot be assembled.
correctly. The abnormal collagen weakens connective tissues, which causes the signs and symptoms of this condition.

Osteogenesis imperfecta

Most COL1A2 gene mutations cause severe forms of osteogenesis imperfecta, including types II, III, and IV. People with these conditions have bones that break easily, often from mild trauma or with no apparent cause. Mutations in the COL1A2 gene occasionally cause osteogenesis imperfecta type I, the mildest form of this disorder.

Some COL1A2 mutations delete pieces of the gene, which leads to a pro-α2(I) chain that is missing critical regions. Other genetic changes alter the sequence of protein building blocks (amino acids) in the pro-α2(I) chain, usually replacing the amino acid glycine with a different amino acid. In some cases, amino acid substitutions alter one end of the protein chain (called the C-terminus), which interferes with the assembly of collagen molecules. These COL1A2 mutations prevent the normal production of type I collagen. When abnormal collagen is incorporated into developing bones and other connective tissues, it causes the serious medical problems associated with severe forms of osteogenesis imperfecta.

Other disorders

People with certain COL1A2 mutations exhibit the signs and symptoms of both osteogenesis imperfecta and Ehlers-Danlos syndrome (described above). These mutations include duplications of a large part of the gene, deletions of an important segment of the pro-α2(I) chain, and genetic changes that result in an abnormally shortened version of the pro-α2(I) chain. Mutations in the COL1A2 gene alter the structure of type I collagen fibrils, which weakens connective tissue and leads to the characteristic features of these two conditions.
Chromosomal Location

Cytogenetic Location: 7q21.3, which is the long (q) arm of chromosome 7 at position 21.3

Molecular Location: base pairs 94,394,561 to 94,431,232 on chromosome 7 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- alpha 2 collagen type I
- CO1A2_HUMAN
- collagen I, alpha-2 polypeptide
- collagen of skin, tendon and bone, alpha-2 chain
- collagen type I alpha 2
- collagen, type I, alpha 2

Additional Information & Resources

Educational Resources

  https://www.ncbi.nlm.nih.gov/books/NBK26810/#A3551
  https://www.ncbi.nlm.nih.gov/books/NBK21582/
  https://www.ncbi.nlm.nih.gov/books/NBK9874/?rendertype=figure&id=A2050

Clinical Information from GeneReviews

- COL1A1/2-Related Osteogenesis Imperfecta
  https://www.ncbi.nlm.nih.gov/books/NBK1295
Scientific Articles on PubMed

- PubMed
  https://www.ncbi.nlm.nih.gov/pubmed?term=%28COL1A2%5BTIAB%5D%29+OR+%28alpha+2+collagen+type+I%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29+AND+english+%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+720+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- COLLAGEN, TYPE I, ALPHA-2
  http://omim.org/entry/120160

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
  http://atlasgeneticsoncology.org/Genes/COL1A2ID411ch7q22.html
- ClinVar
  https://www.ncbi.nlm.nih.gov/clinvar?term=COL1A2%5Bgene%5D
- Database Of Human Type I And Type III Collagen Mutations
  https://www.le.ac.uk/genetics/collagen/
- HGNC Gene Family: Collagens
  https://www.genenames.org/cgi-bin/genefamilies/set/490
- HGNC Gene Symbol Report
  https://www.genenames.org/cgi-bin/gene_symbol_report?q=data/hgnc_data.php&hgnc_id=2198
- Monarch Initiative
  https://monarchinitiative.org/gene/NCBIGene:1278
- NCBI Gene
- UniProt
  https://www.uniprot.org/uniprot/P08123

Sources for This Summary

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28306225
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23145505
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20960610

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28306229

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16816023 
  Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2564565/

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23692737 
  Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662563/

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15077201 
  Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1181985/

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24715559 
  Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314691/

Reprinted from Genetics Home Reference: 
  https://ghr.nlm.nih.gov/gene/COL1A2

Reviewed: November 2017
Published: August 28, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services