CNGA3 gene

cyclic nucleotide gated channel alpha 3

Normal Function

The CNGA3 gene provides instructions for making one part (the alpha subunit) of the cone photoreceptor cyclic nucleotide-gated (CNG) channel. These channels are found exclusively in light-detecting (photoreceptor) cells called cones, which are located in a specialized tissue at the back of the eye known as the retina. Cones provide vision in bright light (daylight vision), including color vision. Other photoreceptor cells, called rods, provide vision in low light (night vision).

CNG channels are openings in the cell membrane that transport positively charged atoms (cations) into cells. In cones, CNG channels remain open under dark conditions, allowing cations to flow in. When light enters the eye, it triggers the closure of these channels, stopping the inward flow of cations. This change in cation transport alters the cone's electrical charge, which ultimately generates a signal that is interpreted by the brain as vision. This process of translating light into an electrical signal is called phototransduction.

Health Conditions Related to Genetic Changes

Achromatopsia

More than 100 mutations in the CNGA3 gene have been found to cause the vision disorder achromatopsia. These mutations underlie about 25 percent of cases of complete achromatopsia, a form of the disorder characterized by a total lack of color vision and other vision problems that are present from early infancy. CNGA3 gene mutations have also been identified in a few individuals with incomplete achromatopsia, a milder form of the disorder associated with limited color vision.

The CNGA3 gene mutations that underlie complete achromatopsia affect the production or function of the alpha subunit. In some cases, no protein is produced. In others, the protein is altered and does not function normally. CNG channels assembled without the alpha subunit or with an abnormal subunit are nonfunctional; they prevent cones from carrying out phototransduction. Researchers speculate that some defective channels allow a huge influx of cations into cones, which ultimately causes these cells to self-destruct (undergo apoptosis). A loss of cone function underlies the lack of color vision and other vision problems in people with complete achromatopsia.

A few mutations in the CNGA3 gene reduce but do not eliminate the function of CNG channels in cones. These mutations cause incomplete achromatopsia because the partially functioning cones can transmit some visual information to the brain.
Because these CNG channels are specific to cones, rods are generally unaffected by this disorder.

Cone-rod dystrophy

Other disorders

Mutations in the \textbf{CNGA3} gene have also been identified in a small percentage of cases of progressive cone dystrophy. Like achromatopsia (described above), this condition affects the function of cones in the retina. However, unlike achromatopsia, progressive cone dystrophy is associated with cones that work normally at birth but begin to malfunction in childhood or adolescence. Over time, people with progressive cone dystrophy develop increasing blurriness and loss of color vision. It is unclear why some \textbf{CNGA3} gene mutations cause achromatopsia and others result in progressive cone dystrophy.

\textbf{Chromosomal Location}

Cytogenetic Location: 2q11.2, which is the long (q) arm of chromosome 2 at position 11.2

Molecular Location: base pairs 98,346,155 to 98,399,154 on chromosome 2 (Homo sapiens Updated Annotation Release 109.20190607, GRCh38.p13) (NCBI)

\textbf{Other Names for This Gene}

- ACHM2
- CCNC1
- CCNCa
- CCNCalpha
- CNCG3
- CNG3
- CNGA3_HUMAN
- cone photoreceptor cGMP-gated channel alpha subunit
Additional Information & Resources

Educational Resources

 https://www.ncbi.nlm.nih.gov/books/NBK10806/

 Phototransduction in Rods and Cones
 https://www.ncbi.nlm.nih.gov/books/NBK52768/

Clinical Information from GeneReviews

- Achromatopsia
 https://www.ncbi.nlm.nih.gov/books/NBK1418

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28CNGA3%5BTIAB%5D%29+OR+%28cyclic+nucleotide+gated+channel+alpha+3%5BTIAB%5D%29+AND+%28Genes%5BMH%5D+OR+Genetic+Phenomena%5BMH%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- CYCLIC NUCLEOTIDE-GATED CHANNEL, ALPHA-3
 http://omim.org/entry/600053

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_CNGA3.html

- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=CNGA3%5Bgene%5D

- HGNC Gene Symbol Report

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:1261

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/Q16281
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14757870
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1735666/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20506298

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301591

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9662398

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15962012

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18521937

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20079539

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14715947

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11536077
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1226059/

Reprinted from Genetics Home Reference: