CLN3 gene
CLN3, battenin

Normal Function
The CLN3 gene provides instructions for making a protein called battenin. This protein is primarily located in the membranes of lysosomes and endosomes, which are compartments within the cell that digest and recycle materials. The protein can also be found in the membrane that surrounds the cell and in the membrane of the Golgi apparatus, which is a cell structure that modifies newly produced enzymes and other proteins. The function of battenin in these cellular structures is unclear.

Studies have associated battenin with many cellular processes, including recycling of worn-out cell parts and unneeded proteins (autophagy), maintenance of the relative acidity (pH) of lysosomes, the movement of molecules from the cell surface into the cell (endocytosis), transportation (trafficking) of proteins to where they are needed in the cell, self-destruction of cells (apoptosis), cell growth and division (proliferation), and maintenance of the body's water balance (osmoregulation). It is uncertain whether any of these varied functions is the primary role of battenin, or if they represent downstream effects.

Health Conditions Related to Genetic Changes

CLN3 disease
More than 65 mutations in the CLN3 gene have been found to cause CLN3 disease. CLN3 disease is an inherited disorder that primarily affects the nervous system. Children with this condition develop worsening vision impairment, intellectual disability, movement problems, speech difficulties, and seizures.

One CLN3 gene mutation, found in more than 90 percent of cases, deletes about 1,000 DNA building blocks (base pairs) in the gene. This mutation, which is usually called the 1 kilobase (kb) deletion, removes a piece of the CLN3 gene and leads to the production of an abnormally short protein that is probably broken down quickly. As a result, there is a severe reduction in the amount of functional battenin in cells. Other mutations also reduce the amount or impair the function of battenin. It is not known how the loss of this protein causes the signs and symptoms of CLN3 disease.

CLN3 disease is characterized by the accumulation of proteins and other substances in lysosomes. These accumulations occur in cells throughout the body; however, nerve cells seem to be particularly vulnerable to their effects. The accumulations can cause cell damage leading to cell death. The progressive death of nerve cells in the brain and other tissues leads to the neurological signs and symptoms of CLN3 disease. Additionally, it is thought that cardiac cell damage and death due
to lysosomal accumulations contribute to the heart problems in people with CLN3 disease. However, it is unclear how mutations in the CLN3 gene are involved in the buildup of substances in lysosomes.

Chromosomal Location

Cytogenetic Location: 16p12.1, which is the short (p) arm of chromosome 16 at position 12.1

Molecular Location: base pairs 28,466,653 to 28,492,302 on chromosome 16 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- BATTENIN
- BTN1
- BTS
- ceroid-lipofuscinosis, neuronal 3
- CLN3_HUMAN
- JNCL
- MGC102840

Additional Information & Resources

Educational Resources

- Beyond Batten Disease Foundation: CLN3 gene
 https://beyondbatten.org/research/cln3-gene/

- Molecular Biology of the Cell (fourth edition, 2002): Lysosomes Are the Principal Sites of Intracellular Digestion
 https://www.ncbi.nlm.nih.gov/books/NBK26844/#A2365

Clinical Information from GeneReviews

- Neuronal Ceroid-Lipofuscinoses
 https://www.ncbi.nlm.nih.gov/books/NBK1428
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28CLN3%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- CLN3 GENE
 http://omim.org/entry/607042

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_CLN3.html
- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=CLN3%5Bgene%5D
- HGNC Gene Symbol Report
 https://www.genenames.org/cgi-bin/gene_symbol_report?q=data/hgnc_data.php&hgnc_id=2074
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:1201
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/Q13286
- University College London: CLN3 Gene Mutation Database
 http://www.ucl.ac.uk/ncl/CLN3mutationtable.htm

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22545070
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334816/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25962910

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17947292
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27453211

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15657902

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18688960

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22261744

Reprinted from Genetics Home Reference:

Reviewed: January 2017
Published: September 25, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services