CLCF1 gene
cardiotrophin like cytokine factor 1

Normal Function

The *CLCF1* gene provides instructions for making a protein called cardiotrophin-like cytokine factor 1 (CLCF1). This protein partners with a similar protein called cytokine receptor-like factor 1 (CRLF1), which is produced from the *CRLF1* gene. Together, these two proteins form a unit known as the CRLF1/CLCF1 protein complex. This complex attaches (binds) to a receptor protein known as the ciliary neurotrophic factor receptor (CNTFR) on the surface of many types of cells. When the CRLF1/CLCF1 protein complex is bound to CNTFR, it triggers signaling inside the cell that affects cell development and function.

The CNTFR signaling pathway is primarily involved in the development and maintenance of the nervous system. It promotes the survival of nerve cells (neurons), particularly nerve cells that control muscle movement (motor neurons). The CNTFR pathway also plays a role in a part of the nervous system called the sympathetic nervous system, specifically in the regulation of sweating in response to temperature changes and other factors. This signaling pathway appears to be critical for the normal development and maturation of nerve cells that control the activity of sweat glands.

Studies suggest that the CNTFR signaling pathway also has functions outside the nervous system. It may be involved in the body's inflammatory response, which helps fight infection and facilitate tissue repair following an injury. This pathway may also be important for the development and maintenance of bone tissue. However, little is known about the role of CNTFR signaling in these processes.

Health Conditions Related to Genetic Changes

Cold-induced sweating syndrome

At least four mutations in the *CLCF1* gene have been reported to cause cold-induced sweating syndrome, a rare condition characterized by problems with regulating body temperature and other abnormalities affecting many parts of the body. When this condition is caused by *CLCF1* gene mutations, it is known as CISS2.

Mutations in the *CLCF1* gene lead to the production of a nonfunctional version of the CLCF1 protein. The defective protein is unable to interact with the CRLF1 protein and bind to CNTFR, which disables the CNTFR signaling pathway.

Researchers believe that a failure of CNTFR signaling underlies the major features of cold-induced sweating syndrome. A loss of this signaling pathway during sympathetic nervous system development may help explain the abnormal sweating that is
characteristic of this condition, including unusual sweating patterns and related
problems with body temperature regulation. The CNTFR pathway's involvement in
motor neuron development and bone development provides clues to some of the
other signs and symptoms of the disorder, including distinctive facial features, facial
muscle weakness, and skeletal abnormalities. However, little is known about how a
lack of CNTFR signaling leads to these varied features.

Chromosomal Location

Cytogenetic Location: 11q13.2, which is the long (q) arm of chromosome 11 at position
13.2

Molecular Location: base pairs 67,364,168 to 67,374,177 on chromosome 11 (Homo
sapiens Updated Annotation Release 109.20200228, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- B-cell stimulating factor 3
- B-cell stimulatory factor 3
- BSF-3
- BSF3
- cardiotrophin-like cytokine
- cardiotrophin-like cytokine factor 1
- CISS2
- CLC
- CLCF1_HUMAN
- CRLF1 associated cytokine-like factor 1
- neurotrophin-1/B-cell stimulating factor-3
- NNT-1
- NNT-1/BSF-3
- NNT1
• novel neurotrophin-1
• NR6

Additional Information & Resources

Educational Resources
• Madame Curie Bioscience Database: Neuronal Survival and Cell Death Signaling Pathways
 https://www.ncbi.nlm.nih.gov/books/NBK6319/
• Merck Manual for Healthcare Professionals: Overview of the Autonomic Nervous System
 https://www.merckmanuals.com/professional/neurologic-disorders/autonomic-nervous-system/overview-of-the-autonomic-nervous-system

Clinical Information from GeneReviews
• Cold-Induced Sweating Syndrome including Crisponi Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK52917

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28CLCF1%5BTIAB%5D%29+OR+%28cardiotrophin-like+cytokine+factor+1%5BTIAB%5D%29+OR+%28%28B-cell+stimulating+factor+3%5BTIAB%5D%29+OR+%28BSF-3%5BTIAB%29%29+OR+%28CISS2%5BTIAB%5D%29+OR+%28NNT-1%5BTIAB%5D%29+OR+%28NNT1%5BTIAB%5D%29+AND+%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D

Catalog of Genes and Diseases from OMIM
• CARDIOTROPHIN-LIKE CYTOKINE FACTOR 1
 http://omim.org/entry/607672

Research Resources
• Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_CLCF1.html
• ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=CLCF1%5Bgene%5D
• HGNC Gene Symbol Report
• Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:23529
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16952376

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20400119

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16782820
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1502507/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10500198
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC18055/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10448081

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15450249

Reviewed: August 2012
Published: April 28, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services