CACNA1S gene

calcium voltage-gated channel subunit alpha1 S

Normal Function

The CACNA1S gene belongs to a family of genes that provide instructions for making calcium channels. These channels, which transport positively charged calcium atoms (ions) into cells, play a key role in a cell's ability to generate and transmit electrical signals.

The CACNA1S gene provides instructions for making calcium channels that are abundant in muscles used for movement (skeletal muscles). For the body to move normally, these muscles must tense (contract) and relax in a coordinated way. Muscle contractions are triggered by the flow of certain ions into muscle cells. Channels made with the CACNA1S protein control the transport of calcium ions into muscle cells and are part of the cellular machinery that initiates muscle contractions.

Channels made with the CACNA1S protein also activate a protein called ryanodine receptor 1 (produced by the RYR1 gene). Ryanodine receptor 1 forms a channel that releases stored calcium ions within muscle cells in response to certain signals. The resulting increase in calcium ion concentration stimulates muscle fibers to contract, allowing the body to move.

Health Conditions Related to Genetic Changes

Hypokalemic periodic paralysis

At least four mutations in the CACNA1S gene have been identified in people with hypokalemic periodic paralysis. These mutations cause up to 70 percent of all cases of this disorder.

Mutations in the CACNA1S gene change single protein building blocks (amino acids) used to make the CACNA1S protein, which alters the structure and function of calcium channels in skeletal muscle cells. The altered channels open more slowly than usual, reducing the flow of calcium ions into these cells. This disruption in calcium ion transport prevents muscles from contracting normally. It is unclear precisely how these changes lead to episodes of muscle weakness in people with hypokalemic periodic paralysis.

Malignant hyperthermia

CACNA1S mutations account for a very small percentage of all cases of malignant hyperthermia. Researchers have identified two mutations in the CACNA1S gene that are associated with an increased risk of this condition. One of these mutations replaces the amino acid arginine with the amino acid cysteine at protein position 1086.
(written as Arg1086Cys); the other mutation replaces the amino acid arginine with the amino acid histidine at the same protein position (Arg1086His).

Genetic mutations likely cause channels made with the CACNA1S protein to activate the RYR1 channel improperly in response to certain drugs (particularly some anesthetics and a type of muscle relaxant used during surgery). As a result, large amounts of calcium ions are released from storage within muscle cells. An overabundance of available calcium ions causes skeletal muscles to contract abnormally, which leads to muscle rigidity in people with malignant hyperthermia. An increase in calcium ion concentration also activates processes that generate heat (leading to increased body temperature) and produce excess acid (leading to acidosis).

Chromosomal Location

Cytogenetic Location: 1q32.1, which is the long (q) arm of chromosome 1 at position 32.1

Molecular Location: base pairs 201,039,509 to 201,112,453 on chromosome 1 (Homo sapiens Updated Annotation Release 109.20190607, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- CAC1S_HUMAN
- CACH1
- CACN1
- CACNL1A3
- calcium channel, voltage-dependent, L type, alpha 1S subunit
- Cav1.1
- CCHL1A3
- DHPR
- dihydropyridine receptor
- dihydropyridine-sensitive L-type calcium channel alpha-1 subunit
• HOKPP
• HypoKPP
• hypoPP
• MHS5
• Voltage-dependent L-type calcium channel subunit alpha-1S
• voltage-gated calcium channel subunit alpha Cav1.1

Additional Information & Resources

Educational Resources
• Basic Neurochemistry (sixth edition, 1999): Ca2+ channel mutations produce hypokalemic periodic paralysis
 https://www.ncbi.nlm.nih.gov/books/NBK28162/#A3041
• Eurekah Bioscience Collection: High Voltage-Activated Ca2+ Channels
 https://www.ncbi.nlm.nih.gov/books/NBK6181/#A30865
 https://www.ncbi.nlm.nih.gov/books/NBK21670/
• Neuromuscular Disease Center, Washington University
 https://neuromuscular.wustl.edu/mother/chan.html#ca

Clinical Information from GeneReviews
• Hypokalemic Periodic Paralysis
 https://www.ncbi.nlm.nih.gov/books/NBK1338
• Malignant Hyperthermia Susceptibility
 https://www.ncbi.nlm.nih.gov/books/NBK1146

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28CACNA1S%5BTIAB%5D%29+OR+%28%28CACNL1A3%5BTIAB%5D%29+OR+%28CCHL1A3%5BTIAB%5D%29+OR+%28dihydropyridine+receptor%5BTIAB%5D%29+OR+%28HOKPP%5BTIAB%5D%29+OR+%28CACH1%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM
• CALCIUM CHANNEL, VOLTAGE-DEPENDENT, L TYPE, ALPHA-1S SUBUNIT
 http://omim.org/entry/114208
Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_CACNA1S.html

- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=CACNA1S%5Bgene%5D

- HGNC Gene Symbol Report

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:779

- NCBI Gene

- UniProt
 https://www.uniprot.org/uniprot/Q13698

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9132138

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11898585

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15534250

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9199552
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1716149/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9199552

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11260227
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16195244

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301512

Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1579762/

Yamakage M, Namiki A. Calcium channels--basic aspects of their structure, function and gene encoding; anesthetic action on the channels--a review. Can J Anaesth. 2002 Feb;49(2):151-64. Review. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11823393

Reviewed: October 2007
Published: September 3, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services