BRCA2 gene
BRCA2, DNA repair associated

Normal Function

The *BRCA2* gene provides instructions for making a protein that acts as a tumor suppressor. Tumor suppressor proteins help prevent cells from growing and dividing too rapidly or in an uncontrolled way.

The BRCA2 protein is involved in repairing damaged DNA. In the nucleus of many types of normal cells, the BRCA2 protein interacts with several other proteins to mend breaks in DNA. These breaks can be caused by natural and medical radiation or other environmental exposures, and they also occur when chromosomes exchange genetic material in preparation for cell division. By helping to repair DNA, the BRCA2 protein plays a critical role in maintaining the stability of a cell’s genetic information.

Researchers suspect that the BRCA2 protein has additional functions within cells. For example, the protein may help regulate cytokinesis, which is the step in cell division when the fluid surrounding the nucleus (the cytoplasm) divides to form two separate cells. Researchers are investigating the protein's other potential activities.

Health Conditions Related to Genetic Changes

Breast cancer

Researchers have identified more than 1,800 mutations in the *BRCA2* gene. Many of these mutations are associated with an increased risk of breast cancer in both men and women, as well as several other types of cancer. These mutations are present in every cell in the body and can be passed from one generation to the next. As a result, they are associated with cancers that cluster in families. However, not everyone who inherits a mutation in the *BRCA2* gene will develop cancer. Other genetic, environmental, and lifestyle factors also contribute to a person’s cancer risk.

Most *BRCA2* gene mutations lead to the production of an abnormally small, nonfunctional version of the BRCA2 protein from one copy of the gene in each cell. As a result, less of this protein is available to help repair damaged DNA or fix mutations that occur in other genes. As these defects accumulate, they can trigger cells to grow and divide uncontrollably to form a tumor.

Ovarian cancer

Many of the same *BRCA2* gene mutations that increase the risk of breast cancer (described above) also increase the risk of ovarian cancer. Families with these mutations are often said to be affected by hereditary breast and ovarian cancer syndrome. Women with *BRCA2* gene mutations have an approximately 12 to 25
percent chance of developing ovarian cancer in their lifetimes, as compared with 1.6 percent in the general population.

Prostate cancer

More than 30 inherited BRCA2 gene mutations have been found to increase the risk of prostate cancer. Men with these mutations are also more likely to develop prostate cancer at an earlier age and may be at increased risk of having an aggressive form of the disease. They may also be at increased risk for other cancers.

BRCA2 gene mutations likely reduce the BRCA2 protein's ability to repair DNA, allowing potentially damaging mutations to persist in various other genes. The accumulation of damaging mutations can lead to the out-of-control cell growth and division that can result in development of a tumor.

Fanconi anemia

Other cancers

Inherited mutations in the BRCA2 gene also increase the risk of several other types of cancer, including pancreatic cancer and an aggressive form of skin cancer called melanoma. These mutations impair the ability of the BRCA2 protein to help repair damaged DNA. As defects accumulate in DNA, they can trigger cells to grow and divide without order to form a tumor. It is not clear why different individuals with BRCA2 mutations develop cancers in different organs. Environmental factors that affect specific organs may contribute to the development of cancers at particular sites.

Chromosomal Location

Cytogenetic Location: 13q13.1, which is the long (q) arm of chromosome 13 at position 13.1

Molecular Location: base pairs 32,315,480 to 32,399,672 on chromosome 13 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI
Other Names for This Gene

- brca 2 gene
- BRCA2_HUMAN
- BRCC2
- breast cancer 2
- breast cancer 2 gene
- breast cancer 2, early onset
- breast cancer 2, early onset gene
- breast cancer type 2 susceptibility gene
- breast cancer type 2 susceptibility protein
- FACD
- FAD
- FAD1
- FANCB
- FANCD1

Additional Information & Resources

Educational Resources

 https://www.ncbi.nlm.nih.gov/books/NBK12959/#A4564
- Madame Curie Bioscience Database: Origin, Recognition, Signaling and Repair of DNA Double-Strand Breaks in Mammalian Cells
 https://www.ncbi.nlm.nih.gov/books/NBK6555/
- National Cancer Institute: Genetics of Breast and Gynecologic Cancers (PDQ)

Clinical Information from GeneReviews

- BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer
 https://www.ncbi.nlm.nih.gov/books/NBK1247
- Fanconi Anemia
 https://www.ncbi.nlm.nih.gov/books/NBK1401
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28BRCA2%5BMAJR%5D%29+AND+%28BRCA2%5BTI%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+360+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- BRCA2 GENE
 http://omim.org/entry/600185
- FANCONI ANEMIA, COMPLEMENTATION GROUP D1
 http://omim.org/entry/605724

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/BRCA2ID164ch13q13.html
- Cancer Genetics Web: BRCA2
 http://www.cancerindex.org/geneweb/BRCA2.htm
- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=BRCA2%5Bgene%5D
- HGNC Gene Family: FA complementation groups
 https://www.genenames.org/cgi-bin/genefamilies/set/548
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:675
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/P51587

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17416853
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2267287/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23620175

Reviewed: October 2015
Published: November 20, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services