ATP1A2 gene
ATPase Na+/K+ transporting subunit alpha 2

Normal Function

The \textit{ATP1A2} gene provides instructions for making one part (the alpha-2 subunit) of a protein known as a Na+/K+ ATPase. This protein uses energy from a molecule called adenosine triphosphate (ATP) to transport charged atoms (ions) into and out of cells. Specifically, it pumps sodium ions (Na+) out of cells and potassium ions (K+) into cells. Na+/K+ ATPases that include the alpha-2 subunit are primarily found in nervous system cells called glia, which protect and maintain nerve cells (neurons). Through its action in glia, the protein plays a critical role in the normal function of neurons. Communication between neurons depends on chemicals called neurotransmitters. To relay signals, a neuron releases neurotransmitters, which attach to receptor proteins on neighboring neurons. After the neurotransmitters have had their effect, they detach from their receptors and are removed from the spaces between neurons by glia. This process is carefully regulated to ensure that signals are transmitted accurately throughout the nervous system. The Na+/K+ ATPase helps regulate this process by stimulating glia to clear neurotransmitters from the spaces between neurons. This protein also removes excess potassium ions from these spaces.

Health Conditions Related to Genetic Changes

\textbf{Alternating hemiplegia of childhood}

At least one mutation in the \textit{ATP1A2} gene can cause alternating hemiplegia of childhood. The primary feature of this condition is recurrent episodes of temporary paralysis, often affecting one side of the body (hemiplegia). During some episodes, the paralysis alternates from one side to the other or affects both sides of the body at the same time. The known \textit{ATP1A2} gene mutation associated with this condition replaces a single protein building block (amino acid) in Na+/K+ ATPase: the amino acid threonine is replaced with the amino acid asparagine at protein position 378 (written as Thr378Asn or T378N). This genetic change probably impairs the protein's ability to transport ions, although it is unclear how the mutation leads to the specific features of alternating hemiplegia of childhood.

\textbf{Familial hemiplegic migraine}

More than 30 mutations in the \textit{ATP1A2} gene have been identified in people with familial hemiplegic migraine type 2 (FHM2). This condition is characterized by migraine headaches with a pattern of neurological symptoms known as aura. In FHM2, the aura includes temporary numbness or weakness on one side of the body (hemiparesis). Most of the mutations involved in FHM2 change single amino acids in
the Na+/K+ ATPase protein. Some mutations impair the protein's ability to transport ions. Others prevent the production of any protein from one copy of the \textit{ATP1A2} gene in each cell. As a result, less potassium is pumped into neurons, less sodium is pumped out of these cells, and neurotransmitters spend more time in the spaces between neurons. The resulting changes in signaling in the brain lead people with FHM2 to develop these severe headaches.

\textbf{Sporadic hemiplegic migraine}

\textit{ATP1A2} gene mutations can also cause sporadic hemiplegic migraine. The signs and symptoms of this condition are identical to those of FHM2 (described above); however, sporadic hemiplegic migraine occurs in people with no family history of the condition. As in FHM2, most of the mutations associated with sporadic hemiplegic migraine change single amino acids in the Na+/K+ ATPase protein. These changes impair the function of the protein. Although the mutations that cause sporadic hemiplegic migraine are not as well-studied as those in familial hemiplegic migraine, it is thought that they have similar effects: impairing the transport of sodium and potassium ions and prolonging the presence of neurotransmitters between neurons. The abnormal signaling resulting from these changes leads to the headaches and auras characteristic of the condition.

\textbf{Chromosomal Location}

Cytogenetic Location: 1q23.2, which is the long (q) arm of chromosome 1 at position 23.2

Molecular Location: base pairs 160,115,759 to 160,143,591 on chromosome 1 (Homo sapiens Updated Annotation Release 109.20200228, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

\textbf{Other Names for This Gene}

- AT1A2_HUMAN
- ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide
- ATPase, Na+/K+ transporting, alpha 2 polypeptide
- FHM2
• MHP2
• Na+/K+ ATPase 2
• Na+/K+ -ATPase alpha 2 subunit proprotein
• Na+/K+ ATPase, alpha-A(+) catalytic polypeptide
• Na+/K+ ATPase, alpha-B polypeptide
• sodium-potassium ATPase
• sodium pump 2
• sodium pump subunit alpha-2
• sodium/potassium-transporting ATPase alpha-2 chain

Additional Information & Resources

Educational Resources
• Basic Neurochemistry (sixth edition, 1998): The ATP-Dependent Na+,K+ Pump
 https://www.ncbi.nlm.nih.gov/books/NBK28174/

Clinical Information from GeneReviews
• Familial Hemiplegic Migraine
 https://www.ncbi.nlm.nih.gov/books/NBK1388

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed/?term=%28ATP1A2%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM
• ATPase, Na+/K+ TRANSPORTING, ALPHA-2 POLYPEPTIDE
 http://omim.org/entry/182340

Research Resources
• Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_ATP1A2.html
• ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=ATP1A2%5Bgene%5D
• HGNC Gene Symbol Report
Sources for This Summary

 D, Boneschi FM, Barone V, Casari G. A novel mutation in the ATP1A2 gene causes alternating
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15286158
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1735877/

 J, Sequeiros J, Frants RR, Koenderink JB, Pereira-Monteiro JM, van den Maagdenberg AM. Two
 novel functional mutations in the Na+,K+-ATPase alpha2-subunit ATP1A2 gene in patients with
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18028456

 Lehmann-Horn F, Dichgans M. Variability of familial hemiplegic migraine with novel A1A2 Na+/K+-
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15159495

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17395138

- Riant F, De Fusco M, Aridon P, Ducros A, Ploton C, Marchelli F, Maciazek J, Bousser MG, Casari
 G, Tournier-Lasserve E. ATP1A2 mutations in 11 families with familial hemiplegic migraine. Hum
 Mutat. 2005 Sep;26(3):281.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16088919

- Riant F, Ducros A, Ploton C, Barbance C, Depienne C, Tournier-Lasserve E. De novo mutations in
 ATP1A2 and CACNA1A are frequent in early-onset sporadic hemiplegic migraine. Neurology. 2010
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20837964

 LJ, Silver K, Youroukos S. Alternating hemiplegia of childhood or familial hemiplegic migraine? A
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15174025

- Tavraz NN, Dürr KL, Koenderink JB, Freilinger T, Bamberg E, Dichgans M, Friedrich T. Impaired
 plasma membrane targeting or protein stability by certain ATP1A2 mutations identified in sporadic
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19372756

 MD, Dichgans M. Systematic analysis of three FHM genes in 39 sporadic patients with hemiplegic
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18056581