ALG12 gene
ALG12, alpha-1,6-mannosyltransferase

Normal Function

The *ALG12* gene provides instructions for making an enzyme that is involved in a process called glycosylation. During this process, complex chains of sugar molecules (oligosaccharides) are attached to proteins and fats (lipids). Glycosylation modifies proteins so they can fully perform their functions. Oligosaccharides are made up of many sugar molecules that are attached to one another in a stepwise process, forming a complex chain. The enzyme produced from the *ALG12* gene transfers a simple sugar called mannose to growing oligosaccharides at a particular step in the formation of the chain. Once the correct number of sugar molecules are linked together, the oligosaccharide is attached to a protein or lipid.

Health Conditions Related to Genetic Changes

ALG12-congenital disorder of glycosylation

At least 13 mutations in the *ALG12* gene have been found to cause *ALG12*-congenital disorder of glycosylation (*ALG12*-CDG). This condition typically leads to delayed growth and development, weak muscle tone (hypotonia), and other signs and symptoms. Mutations in the *ALG12* gene result in the production of an abnormal enzyme with little activity. Without a properly functioning enzyme, mannose cannot be added to the chain efficiently, and the resulting oligosaccharides are often incomplete. Although the short oligosaccharides can be transferred to proteins and lipids, the process is not as efficient as with the full-length oligosaccharide. As a result, glycosylation is reduced. The wide variety of signs and symptoms in *ALG12*-CDG are likely due to impaired glycosylation of proteins and lipids that are needed for normal function in many organs and tissues, including the brain.
Chromosomal Location

Cytogenetic Location: 22q13.33, which is the long (q) arm of chromosome 22 at position 13.33

Molecular Location: base pairs 49,860,163 to 49,918,469 on chromosome 22 (Homo sapiens Updated Annotation Release 109.20200522, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- asparagine-linked glycosylation 12 homolog (S. cerevisiae, alpha-1,6-mannosyltransferase)
- asparagine-linked glycosylation 12 homolog (yeast, alpha-1,6-mannosyltransferase)
- asparagine-linked glycosylation 12, alpha-1,6-mannosyltransferase homolog
- asparagine-linked glycosylation protein 12 homolog
- CDG1G
- dol-P-Man dependent alpha-1,6-mannosyltransferase
- dol-P-Man:Man(7)GlcNAc(2)-PP-Dol alpha-1,6-mannosyltransferase
- dolichyl-P-Man:Man(7)GlcNAc(2)-PP-dolichol alpha-1,6-mannosyltransferase
- dolichyl-P-Man:Man(7)GlcNAc(2)-PP-dolichyl-alpha-1,6-mannosyltransferase
- dolichyl-P-mannose:Man-7-GlcNAc-2-PP-dolichyl-alpha-6-mannosyltransferase
- ECM39
- hALG12
- mannosyltransferase ALG12 homolog
- membrane protein SB87
- PP14673
Additional Information & Resources

Educational Resources

• Biochemistry (fifth edition, 2002): Carbohydrates Can Be Attached to Proteins to Form Glycoproteins
 https://www.ncbi.nlm.nih.gov/books/NBK22521/

Clinical Information from GeneReviews

• Congenital Disorders of N-Linked Glycosylation and Multiple Pathway Overview
 https://www.ncbi.nlm.nih.gov/books/NBK1332

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28ALG12%5BTIAB%5D%29+OR+%28%28dol-P-Man%5BTIAB%5D%29+OR+%28hALG12%5BTIAB%5D%29+OR+%28dolichyl-P-Man%5BTIAB%5D%29+OR+%28dolichyl-P-mannose%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

• ALG12 ALPHA-1,6-MANNOSYLTRANSFERASE
 http://omim.org/entry/607144

Research Resources

• ClinVar

• HGNC Gene Symbol Report

• Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:79087

• NCBI Gene

• UniProt
 https://www.uniprot.org/uniprot/Q9BV10
Sources for This Summary

- OMIM: ALG12 ALPHA-1,6-MANNOSYLTRANSFERASE
 http://omim.org/entry/607144

Reprinted from Genetics Home Reference:

Reviewed: January 2015
Published: June 23, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services

page 4