ALDH4A1 gene
aldehyde dehydrogenase 4 family member A1

Normal Function
The *ALDH4A1* gene provides instructions for producing the enzyme pyrroline-5-carboxylate dehydrogenase, which is found in tissues throughout the body. Within the cells of these tissues, this enzyme functions in energy-producing structures called mitochondria.

Pyrroline-5-carboxylate dehydrogenase starts the second step in the process that breaks down the protein building block (amino acid) proline. This step converts pyrroline-5-carboxylate, which is produced in the first step, to the amino acid glutamate. The conversion between proline and glutamate is important in maintaining a supply of the amino acids needed for protein production, and for energy transfer within the cell.

Health Conditions Related to Genetic Changes

Hyperprolinemia
Researchers have identified three mutations in the *ALDH4A1* gene that eliminate the function of the pyrroline-5-carboxylate dehydrogenase enzyme, causing hyperprolinemia type II. Two of these mutations add or delete a DNA building block (nucleotide), which introduces a premature stop signal that results in an abnormally shortened enzyme. The third mutation results in the substitution of the amino acid leucine for the amino acid serine at position 352 (written as Ser352Leu or S352L) in the pyrroline-5-carboxylate dehydrogenase enzyme. Nonfunctional pyrroline-5-carboxylate dehydrogenase leads to elevated levels of proline and a buildup of the intermediate breakdown product pyrroline-5-carboxylate, causing the signs and symptoms of hyperprolinemia type II.
Chromosomal Location

Cytogenetic Location: 1p36.13, which is the short (p) arm of chromosome 1 at position 36.13

Molecular Location: base pairs 18,871,430 to 18,902,799 on chromosome 1 (Homo sapiens Updated Annotation Release 109.20200522, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- AL4H1_HUMAN
- aldehyde dehydrogenase 4 family, member A1
- aldehyde dehydrogenase 4A1
- ALDH4
- mitochondrial delta-1-pyrroline 5-carboxylate dehydrogenase
- P5C dehydrogenase
- P5CD
- P5CDh
- P5CDhL
- P5CDhS

Additional Information & Resources

Educational Resources
- Sequence-Evolution-Function (2003): Proline Biosynthesis
 https://www.ncbi.nlm.nih.gov/books/NBK20266/#A486
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28ALDH4A1%5BTIAB%5D%29+OR+%28%28P5CD%5BTIAB%5D%29+OR+%28ALDH4%5BTIAB%5D%29+OR+%28P5CDh%5BTIAB%5D%29+OR+%28P5CDhS%5BTIAB%5D%29+OR+%28P5C+dehydrogenase%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- ALDEHYDE DEHYDROGENASE, FAMILY 4, SUBFAMILY A, MEMBER 1
 http://omim.org/entry/606811

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
- ClinVar
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:8659
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/P30038

Sources for This Summary

- OMIM: ALDEHYDE DEHYDROGENASE, FAMILY 4, SUBFAMILY A, MEMBER 1
 http://omim.org/entry/606811
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9700195
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8621661
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16934832
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12604184

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10780262

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10971205

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9490025

Reprinted from Genetics Home Reference:

Reviewed: June 2007
Published: August 17, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services