ALAD gene
aminolevulinate dehydratase

Normal Function
The *ALAD* gene provides instructions for making an enzyme known as delta-aminolevulinate dehydratase. This enzyme is involved in the production of a molecule called heme. Heme is vital for all of the body’s organs, although it is found mostly in the blood, bone marrow, and liver. Heme is an essential component of several iron-containing proteins called hemoproteins, including hemoglobin (the protein that carries oxygen in the blood).

The production of heme is a multi-step process that requires eight different enzymes. Delta-aminolevulinate dehydratase is responsible for the second step in this process, which combines two molecules of delta-aminolevulinic acid (the product of the first step) to form a compound called porphobilinogen. In subsequent steps, four molecules of porphobilinogen are combined and then modified to produce heme.

Health Conditions Related to Genetic Changes

Porphyria
At least 10 mutations in the *ALAD* gene can cause a rare form of porphyria called ALAD deficiency porphyria. Most of these mutations change single protein building blocks (amino acids) in delta-aminolevulinate dehydratase. These changes reduce the activity of the enzyme, allowing delta-aminolevulinic acid to build up to toxic levels in the body. This compound is formed during the normal process of heme production, but reduced activity of delta-aminolevulinate dehydratase allows it to accumulate to toxic levels. Very high levels of this compound can cause attacks of abdominal pain, vomiting, and other signs and symptoms of ALAD deficiency porphyria.

Other disorders
A common variation (polymorphism) in the *ALAD* gene may affect the risk of developing lead poisoning in people exposed to environmental lead. Lead is a heavy metal that is toxic when inhaled or ingested. Lead poisoning can cause significant health problems involving the nervous system, blood, kidneys, and reproductive system.

The *ALAD* variation that has been studied most extensively replaces the amino acid glycine with the amino acid cysteine at position 177 in delta-aminolevulinate dehydratase (written as Gly177Cys or G177C). This variation may influence the amount of lead in a person's blood and bones. Although some studies suggest that
this variation increases the risk of lead poisoning, other studies have not found such an association.

Chromosomal Location

Cytogenetic Location: 9q32, which is the long (q) arm of chromosome 9 at position 32
Molecular Location: base pairs 113,386,312 to 113,401,338 on chromosome 9 (Homo sapiens Updated Annotation Release 109.20190607, GRCh38.p13) (NCBI)

![Genome Diagram](image)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- 5-aminolevulinate dehydratase
- 5-Aminolevulinate hydro-lyase (adding 5-aminolevulinate and cyclizing)
- ALA-Dehydrase
- ALADH
- Aminolevulinate Hydro-Lyase
- aminolevulinate, delta-, dehydratase
- Aminolevulinic Acid Dehydratase
- delta-Aminolevulinate Dehydratase
- delta-Aminolevulinic Acid Dehydratase
- HEM2_HUMAN
- PBGS
- Porphobilinogen Synthase

Additional Information & Resources

Educational Resources

- Biochemistry (fifth edition, 2002): Mammalian Porphyrins Are Synthesized from Glycine and Succinyl Coenzyme A

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28ALAD+AND+gene%5BTIAB%5D%29+AND+%28%285-aminolevulinate+hydro-lyase%5BTIAB%5D%29+OR+%28ala-dehydrase%5BTIAB%5D%29+OR+%28aminolevulinic+acid+dehydratase%5BTIAB%5D%29+OR+%28delta-aminolevulinate+dehydratase%5BTIAB%5D%29+OR+%28porphobilinogen+synthase%5BTIAB%5D%29+OR+%28delta-aminolevulinic+acid+dehydratase%5BTIAB%5D%29+OR+%28aminolevulinate+hydro-lyase%5BTIAB%5D%29+OR+%28ALA-dehydratase+porphyria%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- DELTA-AMINOLEVULINATE DEHYDRATASE
 http://omim.org/entry/125270

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_ALAD.html
- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=ALAD%5Bgene%5D
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:210
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/P13716

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15868463

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17236137
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1785348/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15381398

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15652607

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11427399

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11342419

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11929054

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17366816
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797830/

Reprinted from Genetics Home Reference:

Reviewed: July 2009
Published: August 6, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services