AGL gene
amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase

Normal Function

The AGL gene provides instructions for making the glycogen debranching enzyme. This enzyme is involved in the breakdown of a complex sugar called glycogen, which is a major source of stored energy in the body. Glycogen is made up of several molecules of a simple sugar called glucose. Some glucose molecules are linked together in a straight line, while others branch off and form side chains. The glycogen debranching enzyme is involved in the breakdown of these side chains. The branched structure of glycogen makes it more compact for storage and allows it to break down more easily when it is needed for fuel.

The AGL gene provides instructions for making several different versions (isoforms) of the glycogen debranching enzyme. These isoforms vary by size and are active (expressed) in different tissues.

Health Conditions Related to Genetic Changes

Glycogen storage disease type III

Approximately 100 mutations in the AGL gene have been found to cause glycogen storage disease type III (also called GSDIII or Cori disease). Most of these mutations lead to a premature stop signal in the instructions for making the glycogen debranching enzyme, resulting in a nonfunctional enzyme. As a result, the side chains of glycogen molecules cannot be removed and abnormal, partially broken down glycogen molecules are stored within cells. A buildup of abnormal glycogen damages organs and tissues throughout the body, particularly the liver and muscles, leading to the signs and symptoms of GSDIII.

Mutations in the AGL gene can affect different isoforms of the enzyme, depending on where the mutations are located in the gene. For example, mutations that occur in a part of the AGL gene called exon 3 affect the isoform that is primarily expressed in the liver. These mutations almost always lead to GSD type IIIb, which is characterized by liver problems.
Chromosomal Location

Cytogenetic Location: 1p21.2, which is the short (p) arm of chromosome 1 at position 21.2

Molecular Location: base pairs 99,850,077 to 99,924,023 on chromosome 1 (Homo sapiens Updated Annotation Release 109.20200228, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- amylo-1, 6-glucosidase, 4-alpha-glucanotransferase
- GDE
- GDE_HUMAN
- glycogen debrancher
- glycogen debranching enzyme

Additional Information & Resources

Educational Resources

- Biochemistry (fifth edition, 2002): A Debranching Enzyme Also Is Needed for the Breakdown of Glycogen
 https://www.ncbi.nlm.nih.gov/books/NBK22467/#A2919
- Washington University, St. Louis: Neuromuscular Disease Center
 https://neuromuscular.wustl.edu/msys/glycogen.html#deb

Clinical Information from GeneReviews

- Glycogen Storage Disease Type III
 https://www.ncbi.nlm.nih.gov/books/NBK26372
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28AGL%5BTIAB%5D%29+OR+%28glycogen+debranching+enzyme%5BTIAB%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+2880+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- AMYLO-1,6-GLUCOSIDASE, 4-ALPHA-GLUCANOTRANSFERASE
 http://omim.org/entry/610860

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_AGL.html
- ClinVar
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:178
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/P35573

Sources for This Summary

- OMIM: AMYLO-1,6-GLUCOSIDASE, 4-ALPHA-GLUCANOTRANSFERASE
 http://omim.org/entry/610860
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19299494
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2678930/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17047887
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1194993

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16705713

Reprinted from Genetics Home Reference:

Reviewed: September 2010
Published: March 31, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services