ACADM gene
acyl-CoA dehydrogenase medium chain

Normal Function

The ACADM gene provides instructions for making an enzyme called medium-chain acyl-CoA dehydrogenase (MCAD). This enzyme functions within mitochondria, the energy-producing centers in cells. MCAD is essential for fatty acid oxidation, which is the multistep process that breaks down (metabolizes) fats and converts them to energy.

MCAD is required to metabolize a group of fats called medium-chain fatty acids. These fatty acids are found in foods and body fat and are produced when larger fatty acids are metabolized. Fatty acids are a major source of energy for the heart and muscles. During periods without food (fasting), fatty acids are also an important energy source for the liver and other tissues.

Health Conditions Related to Genetic Changes

Medium-chain acyl-CoA dehydrogenase deficiency

More than 80 mutations in the ACADM gene have been found to cause medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. Many of these mutations change single protein building blocks (amino acids) in the MCAD enzyme. The most common change replaces the amino acid lysine with the amino acid glutamic acid at position 304 in the enzyme (written as Lys304Glu or K304E). This mutation and other amino acid substitutions alter the enzyme's structure, severely reducing or eliminating its activity. Other types of mutations lead to an abnormally small and unstable enzyme that cannot function.

With a shortage (deficiency) of functional MCAD enzyme, medium-chain fatty acids are not metabolized properly. As a result, these fats are not converted to energy, which can lead to some features of this disorder such as lack of energy (lethargy) and low blood sugar (hypoglycemia). Medium-chain fatty acids or partially metabolized fatty acids may build up in tissues and damage the liver and brain. This abnormal buildup causes the other signs and symptoms of MCAD deficiency.
Chromosomal Location

Cytogenetic Location: 1p31.1, which is the short (p) arm of chromosome 1 at position 31.1

Molecular Location: base pairs 75,724,347 to 75,763,679 on chromosome 1 (Homo sapiens Updated Annotation Release 109.20190607, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- ACAD1
- ACADM_HUMAN
- acyl-CoA dehydrogenase, C-4 to C-12 straight chain
- MCAD
- MCADH

Additional Information & Resources

Educational Resources

- Biochemistry (fifth edition, 2002): The Utilization of Fatty Acids as Fuel Requires Three Stages of Processing
 https://www.ncbi.nlm.nih.gov/books/NBK22581/

Clinical Information from GeneReviews

- Medium-Chain Acyl-Coenzyme A Dehydrogenase Deficiency
 https://www.ncbi.nlm.nih.gov/books/NBK1424
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28ACADM%5BTIAB%5D%29+OR+%28%28MCAD%5BTIAB%5D%29+OR+%28MCADH%5BTIAB%5D%29+OR+%28medium-chain+acyl-CoA+dehydrogenase%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1440+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- ACYL-CoA DEHYDROGENASE, MEDIUM-CHAIN
 http://omim.org/entry/607008

Research Resources

- ClinVar
- HGNC Gene Symbol Report
- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:34
- NCBI Gene
- UniProt
 https://www.uniprot.org/uniprot/P11310

Sources for This Summary

- OMIM: ACYL-CoA DEHYDROGENASE, MEDIUM-CHAIN
 http://omim.org/entry/607008
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11524729
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18450854
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19224950
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667288/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15832312

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16291504

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11263545

Reprinted from Genetics Home Reference:

Reviewed: November 2009
Published: July 16, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services