ABCC8 gene
ATP binding cassette subfamily C member 8

Normal Function

The ABCC8 gene provides instructions for making the sulfonylurea receptor 1 (SUR1) protein. The SUR1 protein is one part (subunit) of the ATP-sensitive potassium (K-ATP) channel that is found across cell membranes in the beta cells of the pancreas. Beta cells secrete insulin, which is a hormone that helps control blood sugar levels. Insulin controls how much sugar (in the form of glucose) is passed from the bloodstream into cells to be used as energy. The K-ATP channel controls the secretion of insulin out of beta cells and into the bloodstream. These channels open and close in response to the amount of glucose in the bloodstream, which helps regulate insulin secretion and control blood sugar levels. The closing of the channels results in a process that triggers insulin secretion by beta cells.

Health Conditions Related to Genetic Changes

Congenital hyperinsulinism
More than 300 mutations in the ABCC8 gene have been found to cause congenital hyperinsulinism. This condition causes frequent episodes of low blood sugar (hypoglycemia), decreased energy, and irritability. Most of these mutations change single protein building blocks (amino acids) in the SUR1 protein.

Some ABCC8 mutations prevent the SUR1 protein from reaching the cell membrane, interfering with the proper formation of the K-ATP channel. Other mutations interfere with the K-ATP channel's function or its responses to outside molecules. Defective K-ATP channels lead to the constant release of insulin from beta cells. As a result, glucose is rapidly removed from the bloodstream. Without treatment, the hypoglycemia caused by congenital hyperinsulinism may result in serious complications such as intellectual disability and seizures.

Permanent neonatal diabetes mellitus
At least 14 mutations in the ABCC8 gene have been identified in people with permanent neonatal diabetes mellitus. Individuals with this condition often have a low birth weight and develop increased blood sugar (hyperglycemia) within the first 6 months of life.

ABCC8 gene mutations that cause permanent neonatal diabetes mellitus change single amino acids in the protein sequence. These mutations result in K-ATP channels that do not close, leading to reduced insulin secretion from beta cells and impaired blood sugar control.
Maturity-onset diabetes of the young

Other disorders

Other ABCC8 gene mutations that have a relatively mild effect on K-ATP channel function as compared to that seen in permanent neonatal diabetes mellitus (see above) cause a condition called transient neonatal diabetes mellitus. Infants with this condition have hyperglycemia during the first 6 months of life, but their blood sugar returns to normal by age 18 months. However, affected individuals usually develop hyperglycemia again during adolescence or early adulthood. As in permanent neonatal diabetes mellitus, ABCC8 gene mutations that cause transient neonatal diabetes mellitus interfere with K-ATP channel closure and lead to a reduction in insulin secretion.

Some studies suggest that normal variations (polymorphisms) in the ABCC8 gene are associated with an increased risk of type 2 diabetes, the most common form of diabetes. Other studies, however, have not found an association between ABCC8 gene variants and type 2 diabetes. People with this disease have hyperglycemia because the body does not respond correctly to the insulin secreted from beta cells. Although changes in the ABCC8 gene may be associated with type 2 diabetes, a combination of lifestyle, genetic, and environmental factors all play a part in determining the risk of this complex disorder.

Chromosomal Location

Cytogenetic Location: 11p15.1, which is the short (p) arm of chromosome 11 at position 15.1

Molecular Location: base pairs 17,392,498 to 17,476,849 on chromosome 11 (Homo sapiens Updated Annotation Release 109.20200522, GRCh38.p13) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- ABC36
- ABCC8_HUMAN
- ATP-binding cassette, sub-family C (CFTR/MRP), member 8
• ATP-binding cassette, sub-family C, member 8
• MRP8
• SUR
• SUR1
• TNDM2

Additional Information & Resources

Educational Resources
• Madame Curie Bioscience Database (Landes Bioscience, 2000-2011): Insulin Exocytosis in Pancreatic Beta Cells
 https://www.ncbi.nlm.nih.gov/books/NBK6433/#A59214
• The Human ATP-Binding Cassette (ABC) Transporter Superfamily: ABCC Genes
 https://www.ncbi.nlm.nih.gov/books/NBK3/#A191

Clinical Information from GeneReviews
• Familial Hyperinsulinism
 https://www.ncbi.nlm.nih.gov/books/NBK1375
• Permanent Neonatal Diabetes Mellitus
 https://www.ncbi.nlm.nih.gov/books/NBK1447

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28ABCC8%5BTI%5D%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+720+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM
• ATP-BINDING CASSETTE, SUBFAMILY C, MEMBER 8
 http://omim.org/entry/600509
• DIABETES MELLITUS, TRANSIENT NEONATAL, 2
 http://omim.org/entry/610374

Research Resources
• Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_ABCC8.html
• ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=ABCC8%5Bgene%5D
• HGNC Gene Symbol Report

• Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:6833

• NCBI Gene

• UniProt
 https://www.uniprot.org/uniprot/Q09428

Sources for This Summary

• OMIM: ATP-BINDING CASSETTE, SUBFAMILY C, MEMBER 8
 http://omim.org/entry/600509

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18596924
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2441858/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19475716

Reprinted from Genetics Home Reference:

Reviewed: January 2014
Published: August 17, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services