ABCC2 gene
ATP binding cassette subfamily C member 2

Normal Function

The ABCC2 gene provides instructions for producing a protein called multidrug resistance protein 2 (MRP2). This protein is one of a family of multidrug resistance proteins involved in the transport of substances out of cells. MRP2 is primarily found in the liver, with smaller amounts in the kidneys, intestine, and placenta.

MRP2 transports a variety of substances out of cells. For example, MRP2 clears certain drugs from organs and tissues, playing a part in drug metabolism. Drug metabolism involves the breakdown of drugs into different chemical components allowing the drugs to have their intended effects and eventually be eliminated from the body. MRP2 also transports a substance called bilirubin out of liver cells and into bile (a digestive fluid produced by the liver). Bilirubin is produced during the breakdown of old red blood cells and has an orange-yellow tint.

Health Conditions Related to Genetic Changes

Dubin-Johnson syndrome

More than 30 mutations in the ABCC2 gene have been found to cause Dubin-Johnson syndrome. Most of these mutations change single protein building blocks (amino acids) in MRP2. One mutation is most common among Iranian Jews living in Israel; this mutation replaces the amino acid isoleucine with the amino acid phenylalanine at position 1173 in MRP2 (written as Ile1173Phe or I1173F). Another mutation is seen more frequently among Israel's Moroccan-Jewish population; it replaces the amino acid arginine with the amino acid histidine at position 1150 in MRP2 (written as Arg1150His or R1150H).

ABCC2 gene mutations that cause Dubin-Johnson syndrome have a variety of effects on the structure and function of MRP2. Mutations may alter how the protein is made, impair transport of the protein to the cell surface, or cause the protein to be broken down too quickly. A lack of functional MRP2 disrupts the excretion of bilirubin from the body. A buildup of bilirubin causes yellowing of the skin and whites of the eyes (jaundice) in people with Dubin-Johnson syndrome.

Cancers

Research has shown that the ABCC2 gene is abnormally active (overexpressed) in many types of cancer cells. Increased gene activity means that more MRP2 is produced, which can cause a problem for people receiving drug treatments for cancer. The excess MRP2 may transport certain anticancer drugs out of cancer cells.
before they can have their intended effect. Cancer cells with too much MRP2 can become resistant to anticancer drugs. This effect has been shown in many different types of cancers with multiple anticancer drugs.

Chromosomal Location

Cytogenetic Location: 10q24.2, which is the long (q) arm of chromosome 10 at position 24.2

Molecular Location: base pairs 99,782,598 to 99,853,741 on chromosome 10 (Homo sapiens Annotation Release 109, GRCh38.p12) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- ATP-binding cassette, sub-family C (CFTR/MRP), member 2
- canalicular multispecific organic anion transporter
- CMOAT
- cMRP
- MRP2
- MRP2_HUMAN

Additional Information & Resources

Educational Resources

 https://www.ncbi.nlm.nih.gov/books/NBK13169/#A11397
- The Human ATP-Binding Cassette (ABC) Transporter Superfamily: ABCC Genes
 https://www.ncbi.nlm.nih.gov/books/NBK3/#A191

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28ABCC2%5BTI%5D%29%29+OR+%28MRP2%5BTI%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+last%22last%22+720+days%22%5Bdp%5D
OMIM

- ATP-BINDING CASSETTE, SUBFAMILY C, MEMBER 2
 http://omim.org/entry/601107

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_ABCC2.html

- ClinVar

- HGNC Gene Family: ATP binding cassette subfamily C
 https://www.genenames.org/cgi-bin/genefamilies/set/807

- HGNC Gene Symbol Report

- NCBI Gene

- UniProt
 http://www.uniprot.org/uniprot/Q92887

Sources for This Summary

- OMIM: ATP-BINDING CASSETTE, SUBFAMILY C, MEMBER 2
 http://omim.org/entry/601107

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15870973

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11477083

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11745434

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19020751

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10053008
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1377791/

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10464142

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18691054

Reprinted from Genetics Home Reference:

Reviewed: March 2009
Published: May 29, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services