X-linked lymphoproliferative disease

X-linked lymphoproliferative disease (XLP) is a disorder of the immune system and blood-forming cells that is found almost exclusively in males. More than half of individuals with this disorder experience an exaggerated immune response to the Epstein-Barr virus (EBV). EBV is a very common virus that eventually infects most humans. In some people it causes infectious mononucleosis (commonly known as "mono"). Normally, after initial infection, EBV remains in certain immune system cells (lymphocytes) called B cells. However, the virus is generally inactive (latent) because it is controlled by other lymphocytes called T cells that specifically target EBV-infected B cells.

People with XLP may respond to EBV infection by producing abnormally large numbers of T cells, B cells, and other lymphocytes called macrophages. This proliferation of immune cells often causes a life-threatening reaction called hemophagocytic lymphohistiocytosis. Hemophagocytic lymphohistiocytosis causes fever, destroys blood-producing cells in the bone marrow, and damages the liver. The spleen, heart, kidneys, and other organs and tissues may also be affected. In some individuals with XLP, hemophagocytic lymphohistiocytosis or related symptoms may occur without EBV infection.

About one-third of people with XLP experience dysgammaglobulinemia, which means they have abnormal levels of some types of antibodies. Antibodies (also known as immunoglobulins) are proteins that attach to specific foreign particles and germs, marking them for destruction. Individuals with dysgammaglobulinemia are prone to recurrent infections.

Cancers of immune system cells (lymphomas) occur in about one-third of people with XLP.

Without treatment, most people with XLP survive only into childhood. Death usually results from hemophagocytic lymphohistiocytosis.

XLP can be divided into two types based on its genetic cause and pattern of signs and symptoms: XLP1 (also known as classic XLP) and XLP2. People with XLP2 have not been known to develop lymphoma, are more likely to develop hemophagocytic lymphohistiocytosis without EBV infection, usually have an enlarged spleen (splenomegaly), and may also have inflammation of the large intestine (colitis). Some researchers believe that these individuals should actually be considered to have a similar but separate disorder rather than a type of XLP.
Frequency

XLP1 is estimated to occur in about 1 per million males worldwide. XLP2 is less common, occurring in about 1 per 5 million males.

Causes

Mutations in the SH2D1A and XIAP genes cause XLP. SH2D1A gene mutations cause XLP1, and XIAP gene mutations cause XLP2.

The SH2D1A gene provides instructions for making a protein called signaling lymphocyte activation molecule (SLAM) associated protein (SAP). This protein is involved in the functioning of lymphocytes that destroy other cells (cytotoxic lymphocytes) and is necessary for the development of specialized T cells called natural killer T cells. The SAP protein also helps control immune reactions by triggering self-destruction (apoptosis) of cytotoxic lymphocytes when they are no longer needed.

Some SH2D1A gene mutations impair SAP function. Others result in an abnormally short protein that is unstable or nonfunctional, or prevent any SAP from being produced. The loss of functional SAP disrupts proper signaling in the immune system and may prevent the body from controlling the immune reaction to EBV infection. In addition, lymphomas may develop when defective lymphocytes are not properly destroyed by apoptosis.

The XIAP gene provides instructions for making a protein that helps protect cells from undergoing apoptosis in response to certain signals. XIAP gene mutations can lead to an absence of XIAP protein or decrease the amount of XIAP protein that is produced. It is unknown how a lack of XIAP protein results in the signs and symptoms of XLP, or why features of this disorder differ somewhat between people with XIAP and SH2D1A gene mutations.

Inheritance Pattern

This condition is generally inherited in an X-linked recessive pattern. The genes associated with this condition are located on the X chromosome, which is one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of an associated gene in each cell is sufficient to cause the condition. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons.

In females (who have two X chromosomes), a mutation usually has to occur in both copies of the gene to cause the disorder. Because it is unlikely that females will have two altered copies of an associated gene, males are affected by X-linked recessive disorders much more frequently than females. However, in rare cases a female carrying one altered copy of the SH2D1A or XIAP gene in each cell may develop signs and symptoms of this condition.
Other Names for This Condition

- Duncan disease
- Epstein-Barr virus-induced lymphoproliferative disease in males
- familial fatal Epstein-Barr infection
- Purtilo syndrome
- severe susceptibility to EBV infection
- severe susceptibility to infectious mononucleosis
- X-linked lymphoproliferative syndrome
- XLP

Diagnosis & Management

Genetic Testing Information

- What is genetic testing?
 /primer/testing/genetictesting
- Genetic Testing Registry: Lymphoproliferative syndrome 1, X-linked
- Genetic Testing Registry: Lymphoproliferative syndrome 2, X-linked

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22X-linked+lymphoproliferative+disease%22

Other Diagnosis and Management Resources

- American Academy of Allergy, Asthma and Immunology: Immunoglobulin Replacement Therapy
 https://www.aaaai.org/conditions-and-treatments/conditions-dictionary/immunoglobulin-(IgG)-replacement-therapy
- Children's Hospital of Philadelphia
 https://www.chop.edu/conditions-diseases/x-linked-lymphoproliferative-syndrome
- GeneReview: Lymphoproliferative Disease, X-Linked
 https://www.ncbi.nlm.nih.gov/books/NBK1406
- MedlinePlus Encyclopedia: Epstein-Barr Virus Test
 https://medlineplus.gov/ency/article/003513.htm
Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Epstein-Barr Virus Test
 https://medlineplus.gov/ency/article/003513.htm
- Health Topic: Bone Marrow Transplantation
 https://medlineplus.gov/bonemarrowtransplantation.html
- Health Topic: Immune System and Disorders
 https://medlineplus.gov/immunesystemanddisorders.html
- Health Topic: Infectious Mononucleosis
 https://medlineplus.gov/infectiousmononucleosis.html
- Health Topic: Lymphoma
 https://medlineplus.gov/lymphoma.html

Genetic and Rare Diseases Information Center

- X-linked lymphoproliferative syndrome

Additional NIH Resources

- National Institute of Allergy and Infectious Diseases: X-Linked Lymphoproliferative Disease

Educational Resources

- Children's Hospital of Philadelphia
 https://www.chop.edu/conditions-diseases/x-linked-lymphoproliferative-syndrome
- Merck Manual for Healthcare Professionals
- Orphanet: X-linked lymphoproliferative disease
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=2442
Patient Support and Advocacy Resources

• Immune Deficiency Foundation
 https://primaryimmune.org/

• Jeffrey Modell Foundation
 http://www.info4pi.org/information-booth/encyclopedia/primary-immunodeficiency-definitions

• National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/x-linked-lymphoproliferative-syndrome/

Clinical Information from GeneReviews

• Lymphoproliferative Disease, X-Linked
 https://www.ncbi.nlm.nih.gov/books/NBK1406

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Lymphoproliferative+Disorders%5BMAJR%5D%29+AND+%28%28x-linked+lymphoproliferative+disease%5BTIAMB%5D%29+OR+%28purtilo+syndrome%5BTIMB%5D%29+AND+english%5BLa%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

• LYMPHOPROLIFERATIVE SYNDROME, X-LINKED, 1
 http://omim.org/entry/308240

• LYMPHOPROLIFERATIVE SYNDROME, X-LINKED, 2
 http://omim.org/entry/300635

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18815745

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17989527

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20489057
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2938130/
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19398375
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729708/

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20080127

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19738428

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17080092

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11213803

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19759517
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2752081/

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18702745

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301580

Reprinted from Genetics Home Reference:

Reviewed: November 2014
Published: June 25, 2019