X-linked agammaglobulinemia

X-linked agammaglobulinemia (XLA) is a condition that affects the immune system and occurs almost exclusively in males. People with XLA have very few B cells, which are specialized white blood cells that help protect the body against infection. B cells can mature into the cells that produce special proteins called antibodies or immunoglobulins. Antibodies attach to specific foreign particles and germs, marking them for destruction. Individuals with XLA are more susceptible to infections because their body makes very few antibodies.

Children with XLA are usually healthy for the first 1 or 2 months of life because they are protected by antibodies acquired before birth from their mother. After this time, the maternal antibodies are cleared from the body, and the affected child begins to develop recurrent infections. In children with XLA, infections generally take longer to get better and then they come back again, even with antibiotic medications. The most common bacterial infections that occur in people with XLA are lung infections (pneumonia and bronchitis), ear infections (otitis), pink eye (conjunctivitis), and sinus infections (sinusitis). Infections that cause chronic diarrhea are also common. Recurrent infections can lead to organ damage. People with XLA can develop severe, life-threatening bacterial infections; however, affected individuals are not particularly vulnerable to infections caused by viruses. With treatment to replace antibodies, infections can usually be prevented, improving the quality of life for people with XLA.

Frequency

XLA occurs in approximately 1 in 200,000 newborns.

Causes

Mutations in the BTK gene cause XLA. This gene provides instructions for making the BTK protein, which is important for the development of B cells and normal functioning of the immune system. Most mutations in the BTK gene prevent the production of any BTK protein. The absence of functional BTK protein blocks B cell development and leads to a lack of antibodies. Without antibodies, the immune system cannot properly respond to foreign invaders and prevent infection.

Inheritance Pattern

This condition is inherited in an X-linked recessive pattern. The gene associated with this condition is located on the X chromosome, which is one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation would have to occur in both copies of the gene to cause the
disorder. Because it is unlikely that females will have two altered copies of this gene, males are affected by X-linked recessive disorders much more frequently than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons.

About half of affected individuals do not have a family history of XLA. In most of these cases, the affected person's mother is a carrier of one altered BTK gene. Carriers do not have the immune system abnormalities associated with XLA, but they can pass the altered gene to their children. In other cases, the mother is not a carrier and the affected individual has a new mutation in the BTK gene.

Other Names for This Condition

- agammaglobulinemia
- Bruton's agammaglobulinemia
- congenital agammaglobulinemia
- hypogammaglobulinemia
- XLA

Diagnosis & Management

Genetic Testing Information

- What is genetic testing? /primer/testing/genetictesting

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov https://clinicaltrials.gov/ct2/results?cond=%22X-linked+agammaglobulinemia%22

Other Diagnosis and Management Resources

Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Agammaglobulinemia
 https://medlineplus.gov/ency/article/001307.htm
- Health Topic: Immune System and Disorders
 https://medlineplus.gov/immunesystemanddisorders.html

Genetic and Rare Diseases Information Center

- X-linked agammaglobulinemia
 https://rarediseases.info.nih.gov/diseases/1033/x-linked-agammaglobulinemia

Additional NIH Resources

- National Institute of Allergy and Infectious Diseases: Primary Immune Deficiency Diseases

Educational Resources

- Children's Hospital of Wisconsin
- MalaCards: agammaglobulinemia
 https://www.malacards.org/card/agammaglobulinemia
- MalaCards: agammaglobulinemia, x-linked
 https://www.malacards.org/card/agammaglobulinemia_x_linked
- Merck Manual Consumer Version
 https://www.merckmanuals.com/home/immune-disorders/immunodeficiency-disorders/x-linked-agammaglobulinemia
- Merck Manual Professional Version
 https://www.merckmanuals.com/professional/immunology-allergic-disorders/immunodeficiency-disorders/x-linked-agammaglobulinemia
- Orphanet: X-linked agammaglobulinemia
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=47

Patient Support and Advocacy Resources

- Immune Deficiency Foundation
 https://primaryimmune.org/
- International Patient Organisation for Primary Immunodeficiencies
 https://ipopi.org/
• Jeffrey Modell Foundation: National Primary Immunodeficiency Resource Center
 http://www.info4pi.org/information-booth/encyclopedia/primary-immunodeficiency-definitions

• National Organization for Rare Disorders: Agammaglobulinemia
 https://rarediseases.org/rare-diseases/agammaglobulinemia/

Clinical Information from GeneReviews
• X-Linked Agammaglobulinemia
 https://www.ncbi.nlm.nih.gov/books/NBK1453

Scientific Articles on PubMed
• PubMed
 %5BTIAB%5D%29+AND+english%5Blanguage%5D+AND+human%5Btaxonomy%5D+AND+
 %22last+1080+days%22%5Bdate%5D

Catalog of Genes and Diseases from OMIM
• AGAMMAGLOBULINEMIA, X-LINKED
 http://omim.org/entry/300755

Sources for This Summary
• Conley ME, Farmer DM, Dobbs AK, Howard V, Aiba Y, Shurtleff SA, Kurosaiki T. A minimally
 hypomorphic mutation in Btk resulting in reduced B cell numbers but no clinical disease. Clin Exp
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18241230
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2384053/

• Howard V, Greene JM, Pahwa S, Winkelstein JA, Boyle JM, Kocak M, Conley ME. The health
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16377251

• López-Herrera G, Vargas-Hernández A, González-Serrano ME, Berrón-Ruiz L, Rodríguez-Alba
 JC, Espinosa-Rosas F, Santos-Argumedo L. Bruton's tyrosine kinase—an integral protein of B cell
 development that also has an essential role in the innate immune system. J Leukoc Biol. 2014 Feb;
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24249742

• Plebani A, Soresina A, Rondelli R, Amato GM, Azzari C, Cardinale F, Cazzola G, Consolini R,
 V, Rossi P, Sciotto A, Stabile A; Italian Pediatric Group for XLA-AIEOP. Clinical, immunological,
 and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12217331
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301626

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16969761

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16862044

Reprinted from Genetics Home Reference:

Reviewed: February 2015
Published: March 5, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services