Weissenbacher-Zweymüller syndrome

Weissenbacher-Zweymüller syndrome is a condition that affects bone growth. It is characterized by skeletal abnormalities, hearing loss, and distinctive facial features. The features of this condition significantly overlap those of two similar conditions, otospondylomegaepiphyseal dysplasia (OSMED) and Stickler syndrome type III. All of these conditions are caused by mutations in the same gene, and in some cases, it can be difficult to tell them apart. Some researchers believe they represent a single disorder with a range of signs and symptoms.

Infants born with Weissenbacher-Zweymüller syndrome are smaller than average because the bones in their arms and legs are unusually short. The thigh and upper arm bones are wider than usual at the ends (described as dumbbell-shaped), and the bones of the spine (vertebrae) may also be abnormally shaped. High-frequency hearing loss occurs in some cases. Distinctive facial features include wide-set protruding eyes, a small and upturned nose with a flat bridge, and a small lower jaw. Some affected infants are born with an opening in the roof of the mouth (a cleft palate).

Most people with Weissenbacher-Zweymüller syndrome experience significant "catch-up" growth in the bones of the arms and legs during childhood. As a result, adults with this condition are not unusually short. However, affected adults still have other signs and symptoms of Weissenbacher-Zweymüller syndrome, including distinctive facial features and hearing loss.

Frequency

Weissenbacher-Zweymüller syndrome is very rare; only a few affected families worldwide have been described in the medical literature.

Causes

Weissenbacher-Zweymüller syndrome is caused by mutations in the \textit{COL11A2} gene. This gene provides instructions for making one component of type XI collagen, which is a complex molecule that gives structure and strength to the connective tissues that support the body's joints and organs. Type XI collagen is found in cartilage, a tough but flexible tissue that makes up much of the skeleton during early development. Most cartilage is later converted to bone, except for the cartilage that continues to cover and protect the ends of bones and is present in the nose and external ears. Type XI collagen is also part of the inner ear and the nucleus pulposus, which is the center portion of the discs between vertebrae.

At least one mutation in the \textit{COL11A2} gene can cause Weissenbacher-Zweymüller syndrome. This mutation disrupts the assembly of type XI collagen molecules. The defective collagen weakens connective tissues in many parts of the body, including the
long bones, spine, and inner ears, which impairs bone development and underlies the other signs and symptoms of this condition. It is not well understood why "catch-up" bone growth occurs in childhood.

Inheritance Pattern

This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.

Most cases of this condition result from a new (de novo) mutation in the gene that occurs during the formation of reproductive cells (eggs or sperm) or in early embryonic development. These cases occur in people with no history of the disorder in their family.

Other Names for This Condition

• heterozygous OSMED
• heterozygous otospondylomegaepiphyseal dysplasia
• otospondylomegaepiphyseal dysplasia, autosomal dominant
• Pierre Robin syndrome with fetal chondrodysplasia
• WZS

Diagnosis & Management

Genetic Testing Information

• What is genetic testing?
 /primer/testing/genetictesting
• Genetic Testing Registry: Otospondylomegaepiphyseal dysplasia, autosomal dominant

Additional Information & Resources

Health Information from MedlinePlus

• Health Topic: Bone Diseases
 https://medlineplus.gov/bonediseases.html
• Health Topic: Connective Tissue Disorders
 https://medlineplus.gov/connectivetissuedisorders.html
• Health Topic: Hearing Disorders and Deafness
 https://medlineplus.gov/hearingdisordersanddeafness.html

Genetic and Rare Diseases Information Center

• Weissenbacher-Zweymuller syndrome
Additional NIH Resources

- National Institute of Arthritis and Musculoskeletal and Skin Diseases: Heritable Disorders of Connective Tissue
 https://www.niams.nih.gov/health-topics/heritable-disorders-connective-tissue

Educational Resources

- Nemours Children’s Health System: Skeletal Dysplasia
 https://www.nemours.org/services/skeletal-dysplasia.html?tab=about
- Orphanet: Weissenbacher-Zweymuller syndrome
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=3450

Patient Support and Advocacy Resources

- American Cleft Palate-Craniofacial Association
 https://cleftline.org/
- Human Growth Foundation
 https://www.hgfound.org/
- International Skeletal Dysplasia Registry, UCLA
 https://www.uclahealth.org/ortho/isdr
- My Baby’s Hearing, Boys Town National Research Hospital
 https://www.babyhearing.org/
- National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/osmed-heterozygous/
- Resource List from the University of Kansas Medical Center
 http://www.kumc.edu/gec/support/connect.html

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28weissenbacher-zweymuller+syrnade%5BTIAB%5D%29+OR+%28heterozygous+otospyndylomegaepiphyseal+dysplasia%5BTIAB%5D%29+OR+%28pierre+robin+syndrome+with+fetal+chondrodysplasia%5BTIAB%5D%29+OR+%28heterozygous+osmed%5BTIAB%5D%29+OR+%28weissenbacher+zweymuller+syndrome%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D

Catalog of Genes and Diseases from OMIM

- OTOSPONDYLOMEGAEPHYSEAL DYSPLASIA, AUTOSOMAL DOMINANT
 http://omim.org/entry/184840

Medical Genetics Database from MedGen

- Weissenbacher-Zweymuller syndrome
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1415350

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1723388

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15558753

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9805126

Reprinted from Genetics Home Reference:

Reviewed: May 2016
Published: February 11, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services