Tyrosinemia

Tyrosinemia is a genetic disorder characterized by disruptions in the multistep process that breaks down the amino acid tyrosine, a building block of most proteins. If untreated, tyrosine and its byproducts build up in tissues and organs, which can lead to serious health problems.

There are three types of tyrosinemia, which are each distinguished by their symptoms and genetic cause. Tyrosinemia type I, the most severe form of this disorder, is characterized by signs and symptoms that begin in the first few months of life. Affected infants fail to gain weight and grow at the expected rate (failure to thrive) due to poor food tolerance because high-protein foods lead to diarrhea and vomiting. Affected infants may also have yellowing of the skin and whites of the eyes (jaundice), a cabbage-like odor, and an increased tendency to bleed (particularly nosebleeds). Tyrosinemia type I can lead to liver and kidney failure, softening and weakening of the bones (rickets), and an increased risk of liver cancer (hepatocellular carcinoma). Some affected children have repeated neurologic crises that consist of changes in mental state, reduced sensation in the arms and legs (peripheral neuropathy), abdominal pain, and respiratory failure. These crises can last from 1 to 7 days. Untreated, children with tyrosinemia type I often do not survive past the age of 10.

Tyrosinemia type II can affect the eyes, skin, and mental development. Signs and symptoms often begin in early childhood and include eye pain and redness, excessive tearing, abnormal sensitivity to light (photophobia), and thick, painful skin on the palms of their hands and soles of their feet (palmoplantar hyperkeratosis). About 50 percent of individuals with tyrosinemia type II have some degree of intellectual disability.

Tyrosinemia type III is the rarest of the three types. The characteristic features of this type include intellectual disability, seizures, and periodic loss of balance and coordination (intermittent ataxia).

About 10 percent of newborns have temporarily elevated levels of tyrosine (transient tyrosinemia). In these cases, the cause is not genetic. The most likely causes are vitamin C deficiency or immature liver enzymes due to premature birth.

Frequency

Worldwide, tyrosinemia type I affects about 1 in 100,000 individuals. This type is more common in Norway where 1 in 60,000 to 74,000 individuals are affected. Tyrosinemia type I is even more common in Quebec, Canada where it occurs in about 1 in 16,000 individuals. In the Saguenay-Lac St. Jean region of Quebec, tyrosinemia type I affects 1 in 1,846 people.
Tyrosinemia type II occurs in fewer than 1 in 250,000 individuals worldwide. Tyrosinemia type III is very rare; only a few cases have been reported.

Causes

Mutations in the FAH, TAT, and HPD genes can cause tyrosinemia types I, II, and III, respectively.

In the liver, enzymes break down tyrosine in a five step process, resulting in molecules that are either excreted by the kidneys or used to produce energy or make other substances in the body. The FAH gene provides instructions for the fumarylacetoacetate hydrolase enzyme, which is responsible for the final step of tyrosine breakdown. The enzyme produced from the TAT gene, called tyrosine aminotransferase enzyme, is involved at the first step in the process. The HPD gene provides instructions for making the 4-hydroxyphenylpyruvate dioxygenase enzyme, which is responsible for the second step.

Mutations in the FAH, TAT, or HPD gene cause a decrease in the activity of one of the enzymes in the breakdown of tyrosine. As a result, tyrosine and its byproducts accumulate to toxic levels, which can cause damage and death to cells in the liver, kidneys, nervous system, and other organs.

Inheritance Pattern

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

- hereditary tyrosinemia
- hypertyrosinaemia
- hypertyrosinemia
- tyrosinaemia

Diagnosis & Management

Formal Diagnostic Criteria

- ACT Sheet: Increased Tyrosine
 https://www.ncbi.nlm.nih.gov/books/NBK55827/bin/Tyrosine.pdf
Genetic Testing Information

- What is genetic testing?
 https://primer/testing/genetictesting

- Genetic Testing Registry: 4-Hydroxyphenylpyruvate dioxygenase deficiency

- Genetic Testing Registry: Tyrosinemia type 2

- Genetic Testing Registry: Tyrosinemia type I

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22tyrosinemia%22

Other Diagnosis and Management Resources

- Baby's First Test: Tyrosinemia, Type I
 https://www.babysfirsttest.org/newborn-screening/conditions/tyrosinemia-type-i

- Baby's First Test: Tyrosinemia, Type II
 https://www.babysfirsttest.org/newborn-screening/conditions/tyrosinemia-type-ii

- Baby's First Test: Tyrosinemia, Type III
 https://www.babysfirsttest.org/newborn-screening/conditions/tyrosinemia-type-iii

- GeneReview: Tyrosinemia Type I
 https://www.ncbi.nlm.nih.gov/books/NBK1515

- MedlinePlus Encyclopedia: Aminoaciduria
 https://medlineplus.gov/ency/article/003366.htm

Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Aminoaciduria
 https://medlineplus.gov/ency/article/003366.htm

- Health Topic: Amino Acid Metabolism Disorders
 https://medlineplus.gov/aminoacidmetabolismdisorders.html

- Health Topic: Liver Diseases
 https://medlineplus.gov/liverdiseases.html

- Health Topic: Newborn Screening
 https://medlineplus.gov/newbornscreening.html
Genetic and Rare Diseases Information Center

• Tyrosinemia type 1
 https://rarediseases.info.nih.gov/diseases/2658/tyrosinemia-type-1

• Tyrosinemia type 2

• Tyrosinemia type 3
 https://rarediseases.info.nih.gov/diseases/10332/tyrosinemia-type-3

Educational Resources

• Illinois Department of Public Health
 http://www.idph.state.il.us/HealthWellness/fs/tyrosinemia.htm

• MalaCards: tyrosinemia
 https://www.malacards.org/card/tyrosinemia

• MalaCards: tyrosinemia, type i
 https://www.malacards.org/card/tyrosinemia_type_i_2

• MalaCards: tyrosinemia, type ii
 https://www.malacards.org/card/tyrosinemia_type_ii_2

• MalaCards: tyrosinemia, type iii
 https://www.malacards.org/card/tyrosinemia_type_iii_2

• Orphanet: Tyrosinemia type 1
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=882

• Orphanet: Tyrosinemia type 2
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=28378

• Screening, Technology, and Research in Genetics
 http://www.newbornscreening.info/Parents/aminoaciddisorders/Tyrosinemia.html

• The Swedish Information Centre for Rare Diseases
 http://www.socialstyrelsen.se/rarediseases/tyrosinemiatype1

• University of Washington
 http://depts.washington.edu/tyros/abouttyr.htm

• Virginia Department of Health

Patient Support and Advocacy Resources

• Canadian Liver Foundation
 https://www.liver.ca/patients-caregivers/liver-diseases/tyrosinemia/

• Metabolic Support UK
 https://www.metabolicsupportuk.org/
• National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/tyrosinemia-type-1/

• University of Washington: Tyrosinemia Pal
 http://depts.washington.edu/tyros/tyrpal.htm

Clinical Information from GeneReviews
• Tyrosinemia Type I
 https://www.ncbi.nlm.nih.gov/books/NBK1515

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Tyrosinemias%5BMAJR%5D%29
 +AND+%28tyrosinemia%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human
 %5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM
• TYROSINEMIA, TYPE I
 http://omim.org/entry/276700

• TYROSINEMIA, TYPE II
 http://omim.org/entry/276600

• TYROSINEMIA, TYPE III
 http://omim.org/entry/276710

Sources for This Summary
• Bouyacoub Y, Zribi H, Azzouz H, Nasrallah F, Abdelaziz RB, Kacem M, Rekaya B, Messaoud
 O, Romdhane L, Charfeddine C, Bouziri M, Bouziri S, Tebib N, Mokni M, Kaabachi N, Boubaker
 S, Abdelhak S. Novel and recurrent mutations in the TAT gene in Tunisian families affected

• Couce ML, Dalmau J, del Toro M, Pintos-Morell G, Aldámiz-Echevarría L; Spanish Working Group
 on Tyrosinemia type 1. Tyrosinemia type 1 in Spain: mutational analysis, treatment and long-term

• Heylen E, Scherer G, Vincent MF, Marie S, Fischer J, Nassogne MC. Tyrosinemia Type III detected
 via neonatal screening: management and outcome. Mol Genet Metab. 2012 Nov;107(3):605-7. doi:
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11589874

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23311542
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558375/

Reprinted from Genetics Home Reference:
https://ghr.nlm.nih.gov/condition/tyrosinemia

Reviewed: August 2015
Published: October 16, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services