Thiamine-responsive megaloblastic anemia syndrome

Thiamine-responsive megaloblastic anemia syndrome is a rare condition characterized by hearing loss, diabetes, and a blood disorder called megaloblastic anemia. Megaloblastic anemia occurs when a person has a low number of red blood cells (anemia), and the remaining red blood cells are larger than normal (megaloblastic). The symptoms of this blood disorder may include decreased appetite, lack of energy, headaches, pale skin, diarrhea, and tingling or numbness in the hands and feet. Individuals with thiamine-responsive megaloblastic anemia syndrome begin to show symptoms of megaloblastic anemia between infancy and adolescence. This syndrome is called "thiamine-responsive" because the anemia can be treated with high doses of vitamin B1 (thiamine).

People with thiamine-responsive megaloblastic anemia syndrome develop hearing loss caused by abnormalities of the inner ear (sensorineural hearing loss) during early childhood. It remains unclear whether thiamine treatment can improve hearing or prevent hearing loss.

Diabetes becomes apparent in affected individuals sometime between infancy and adolescence. Although these individuals develop diabetes during childhood, they do not have the form of the disease that develops most often in children, called type 1 (autoimmune) diabetes. People with thiamine-responsive megaloblastic anemia syndrome usually require insulin to treat their diabetes. In some cases, treatment with thiamine can reduce the amount of insulin a person needs.

Some individuals with thiamine-responsive megaloblastic anemia syndrome develop optic atrophy, which is the degeneration (atrophy) of the nerves that carry information from the eyes to the brain. Heart and blood vessel (cardiovascular) problems such as heart rhythm abnormalities and heart defects have also been reported in some people with this syndrome.

Frequency

Thiamine-responsive megaloblastic anemia syndrome has been reported in approximately 30 families worldwide. Its prevalence is unknown.

Causes

Mutations in the SLC19A2 gene cause thiamine-responsive megaloblastic anemia syndrome. This gene provides instructions for making a protein called thiamine transporter 1, which transports thiamine into cells. Thiamine is found in many different foods and is important for numerous body functions.
Most mutations in the \textit{SLC19A2} gene lead to the production of an abnormally short, nonfunctional thiamine transporter 1. Other mutations change single protein building blocks (amino acids) in this protein. All of these mutations prevent thiamine transporter 1 from bringing thiamine into the cell. It remains unclear how the absence of this protein leads to the seemingly unrelated symptoms of megaloblastic anemia, diabetes, and hearing loss. Research suggests that an alternative method for transporting thiamine is present in all the cells of the body, except where blood cells and insulin are formed (in the bone marrow and pancreas, respectively) and cells in the inner ear.

\textbf{Inheritance Pattern}

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

\textbf{Other Names for This Condition}

- Rogers syndrome
- Thiamine-responsive myelodysplasia
- TRMA

\textbf{Diagnosis & Management}

\textbf{Genetic Testing Information}

- What is genetic testing? /primer/testing/genetictesting

\textbf{Research Studies from ClinicalTrials.gov}

- ClinicalTrials.gov https://clinicaltrials.gov/ct2/results?cond=%22Anemia%2C+Megaloblastic+anemia%22+OR+%22Thiamine-responsive+megaloblastic+anemia%22

\textbf{Other Diagnosis and Management Resources}

Additional Information & Resources

Health Information from MedlinePlus

• Encyclopedia: Megaloblastic Anemia (image)
 https://medlineplus.gov/ency/imagepages/1214.htm

• Encyclopedia: Optic nerve atrophy
 https://medlineplus.gov/ency/article/001622.htm

• Encyclopedia: Thiamine
 https://medlineplus.gov/ency/article/002401.htm

• Health Topic: Anemia
 https://medlineplus.gov/anemia.html

• Health Topic: Diabetes
 https://medlineplus.gov/diabetes.html

• Health Topic: Hearing Problems in Children
 https://medlineplus.gov/hearingproblemsinchildren.html

Genetic and Rare Diseases Information Center

• Thiamine responsive megaloblastic anemia syndrome

Educational Resources

• Kids Health: Diabetes Center

• MalaCards: thiamine-responsive megaloblastic anemia syndrome
 https://www.malacards.org/card/thiamine_rresponsive_megaloblastic_anemia Syndrome

• March of Dimes: Hearing Impairment
 https://www.marchofdimes.org/baby/hearing-impairment.aspx

• Orphanet: Thiamine-responsive megaloblastic anemia syndrome
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=49827

Patient Support and Advocacy Resources

• National Organization for Rare Disorders (NORD): Megaloblastic Anemia
 https://rarediseases.org/rare-diseases/anemia-megaloblastic/

• Resource list from the University of Kansas Medical Center: Diabetes
 http://www.kumc.edu/gec/support/diabetes.html

• Resource list from the University of Kansas Medical Center: Hard of Hearing/Deafness
 http://www.kumc.edu/gec/support/hearing.html
Clinical Information from GeneReviews

- Thiamine-Responsive Megaloblastic Anemia Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1282

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Anemia,+Megaloblastic%5BMJ%5D%29+AND+%28thiamine-responsive+megaloblastic+anemia+syndrome%5BTIAB%5D%29+OR+%28thiamine-responsive%5BTIAB%5D%29+AND+megaloblastic+anemia%5BTIAB%5D%29+AND+syndrome%5BTIAB%5D%29+OR+%28rogers+syndrome%5BTIAB%5D%29+OR+%28thiamine-responsive+myelodysplasia%5BTIAB%5D%29+AND+english%5BBl%5D+AND+human%5Bbmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- THIAMINE-RESPONSIVE MEGALOBLASTIC ANEMIA SYNDROME
 http://omim.org/entry/249270

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12435857
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2040007/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10391223

 Citation on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1805778/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14627317

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301459
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17659067

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16373304

Reprinted from Genetics Home Reference:

Reviewed: February 2009
Published: October 23, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services