Tay-Sachs disease

Tay-Sachs disease is a rare inherited disorder that progressively destroys nerve cells (neurons) in the brain and spinal cord.

The most common form of Tay-Sachs disease becomes apparent in infancy. Infants with this disorder typically appear normal until the age of 3 to 6 months, when their development slows and muscles used for movement weaken. Affected infants lose motor skills such as turning over, sitting, and crawling. They also develop an exaggerated startle reaction to loud noises. As the disease progresses, children with Tay-Sachs disease experience seizures, vision and hearing loss, intellectual disability, and paralysis. An eye abnormality called a cherry-red spot, which can be identified with an eye examination, is characteristic of this disorder. Children with this severe infantile form of Tay-Sachs disease usually live only into early childhood.

Other forms of Tay-Sachs disease are very rare. Signs and symptoms can appear in childhood, adolescence, or adulthood and are usually milder than those seen with the infantile form. Characteristic features include muscle weakness, loss of muscle coordination (ataxia) and other problems with movement, speech problems, and mental illness. These signs and symptoms vary widely among people with late-onset forms of Tay-Sachs disease.

Frequency

Tay-Sachs disease is very rare in the general population. The genetic mutations that cause this disease are more common in people of Ashkenazi (eastern and central European) Jewish heritage than in those with other backgrounds. The mutations responsible for this disease are also more common in certain French-Canadian communities of Quebec, the Old Order Amish community in Pennsylvania, and the Cajun population of Louisiana.

Causes

Mutations in the HEXA gene cause Tay-Sachs disease. The HEXA gene provides instructions for making part of an enzyme called beta-hexosaminidase A, which plays a critical role in the brain and spinal cord. This enzyme is located in lysosomes, which are structures in cells that break down toxic substances and act as recycling centers. Within lysosomes, beta-hexosaminidase A helps break down a fatty substance called GM2 ganglioside.

Mutations in the HEXA gene disrupt the activity of beta-hexosaminidase A, which prevents the enzyme from breaking down GM2 ganglioside. As a result, this substance accumulates to toxic levels, particularly in neurons in the brain and spinal cord.
Progressive damage caused by the buildup of GM2 ganglioside leads to the destruction of these neurons, which causes the signs and symptoms of Tay-Sachs disease.

Because Tay-Sachs disease impairs the function of a lysosomal enzyme and involves the buildup of GM2 ganglioside, this condition is sometimes referred to as a lysosomal storage disorder or a GM2-gangliosidosis.

Inheritance Pattern

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

- B variant GM2 gangliosidosis
- GM2 gangliosidosis, type 1
- HexA deficiency
- Hexosaminidase A deficiency
- Hexosaminidase alpha-subunit deficiency (variant B)
- Sphingolipidosis, Tay-Sachs
- TSD

Diagnosis & Management

Genetic Testing Information

- What is genetic testing? [primer/testing/genetictesting](https://www.ncbi.nlm.nih.gov/gtr/conditions/C0039373/)

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov https://clinicaltrials.gov/ct2/results?cond=%22Tay-Sachs+disease%22+OR+%22GM2+Gangliosidoses%22

Other Diagnosis and Management Resources

Additional Information & Resources

Health Information from MedlinePlus

• Encyclopedia: Tay-Sachs Disease
 https://medlineplus.gov/ency/article/001417.htm

• Health Topic: Neurologic Diseases
 https://medlineplus.gov/neurologicdiseases.html

• Health Topic: Tay-Sachs Disease
 https://medlineplus.gov/taysachsdisease.html

Genetic and Rare Diseases Information Center

• Tay-Sachs disease
 https://rarediseases.info.nih.gov/diseases/7737/tay-sachs-disease

Additional NIH Resources

• GeneEd

• National Human Genome Research Institute
 https://www.genome.gov/10001220/

• National Institute of Neurological Disorders and Stroke: Lipid Storage Diseases
 Fact Sheet
 https://www.ninds.nih.gov/Disorders/All-Disorders/Lipid-storage-diseases-Information-Page

• National Institute of Neurological Disorders and Stroke: Tay-Sachs Disease
 Information Page
 https://www.ninds.nih.gov/Disorders/All-Disorders/Tay-Sachs-Disease-Information-Page

Educational Resources

• Cedars-Sinai Medical Center
 https://www.cedars-sinai.edu/Patients/Health-Conditions/Tay-Sachs-Disease.aspx

• KidsHealth from the Nemours Foundation

• MalaCards: tay-sachs disease
 https://www.malacards.org/card/tay_sachs_disease

• March of Dimes

• Orphanet: Tay-Sachs disease
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=845
• The Norton & Elaine Sarnoff Center for Jewish Genetics
 https://www.juf.org/cjg/Ashkenazi-Jewish-Disorders.aspx

• Your Genes Your Health from Cold Spring Harbor Laboratory
 http://www.ygyh.org/tay/whatisit.htm

Patient Support and Advocacy Resources

• National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/tay-sachs-disease/

• National Tay-Sachs and Allied Diseases Association, Inc.
 https://www.ntsad.org/

Clinical Information from GeneReviews

• Hexosaminidase A Deficiency
 https://www.ncbi.nlm.nih.gov/books/NBK1218

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Tay-Sachs+Disease%5BMAJR%5D%29+AND+%28Tay-Sachs+disease%5BTIAB%5D%29+AND+english%5BLa%5D+AND+human%5Bmh%5D+AND+%22last+1440+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

• TAY-SACHS DISEASE
 http://omim.org/entry/272800

Sources for This Summary

• Chavany C, Jendoubi M. Biology and potential strategies for the treatment of GM2 gangliosidoses.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9572057

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15364698

• Kaback MM, Desnick RJ. Hexosaminidase A Deficiency. 1999 Mar 11 [updated 2011 Aug 11]. In:
 Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N,
 Mefford HC, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): University of
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301397

• Maegawa GH, Stockley T, Tropak M, Banwell B, Blaser S, Kok F, Giugliani R, Mahuran D, Clarke
 JT. The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17015493
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910078/
• Mahuran DJ. Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10571007

• Montalvo AL, Filocamo M, Vlahovicek K, Dardis A, Lualdi S, Corsolini F, Bembi B, Pittis MG.
 Molecular analysis of the HEXA gene in Italian patients with infantile and late onset Tay-Sachs
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16088929

• Neudorfer O, Pastores GM, Zeng BJ, Gianutsos J, Zaroff CM, Kolodny EH. Late-onset Tay-Sachs
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15714079

Reprinted from Genetics Home Reference:

Reviewed: October 2012
Published: November 13, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services