Stickler syndrome

Stickler syndrome is a group of hereditary conditions characterized by a distinctive facial appearance, eye abnormalities, hearing loss, and joint problems. These signs and symptoms vary widely among affected individuals.

A characteristic feature of Stickler syndrome is a somewhat flattened facial appearance. This appearance results from underdeveloped bones in the middle of the face, including the cheekbones and the bridge of the nose. A particular group of physical features called Pierre Robin sequence is also common in people with Stickler syndrome. Pierre Robin sequence includes an opening in the roof of the mouth (a cleft palate), a tongue that is placed further back than normal (glossoptosis), and a small lower jaw (micrognathia). This combination of features can lead to feeding problems and difficulty breathing.

Many people with Stickler syndrome have severe nearsightedness (high myopia). In some cases, the clear gel that fills the eyeball (the vitreous) has an abnormal appearance, which is noticeable during an eye examination. Other eye problems are also common, including increased pressure within the eye (glaucoma), clouding of the lens of the eyes (cataracts), and tearing of the lining of the eye (retinal detachment). These eye abnormalities cause impaired vision or blindness in some cases.

In people with Stickler syndrome, hearing loss varies in degree and may become more severe over time. The hearing loss may be sensorineural, meaning that it results from changes in the inner ear, or conductive, meaning that it is caused by abnormalities of the middle ear.

Most people with Stickler syndrome have skeletal abnormalities that affect the joints. The joints of affected children and young adults may be loose and very flexible (hypermobile), though joints become less flexible with age. Arthritis often appears early in life and may cause joint pain or stiffness. Problems with the bones of the spine (vertebrae) can also occur, including abnormal curvature of the spine (scoliosis or kyphosis) and flattened vertebrae (platyspondyly). These spinal abnormalities may cause back pain.

Researchers have described several types of Stickler syndrome, which are distinguished by their genetic causes and their patterns of signs and symptoms. In particular, the eye abnormalities and severity of hearing loss differ among the types. Type I has the highest risk of retinal detachment. Type II also includes eye abnormalities, but type III does not (and is often called non-ocular Stickler syndrome). Types II and III are more likely than type I to have significant hearing loss. Types IV, V, and VI are very rare and have each been diagnosed in only a few individuals.
A condition similar to Stickler syndrome, called Marshall syndrome, is characterized by a distinctive facial appearance, eye abnormalities, hearing loss, and early-onset arthritis. Marshall syndrome can also include short stature. Some researchers have classified Marshall syndrome as a variant of Stickler syndrome, while others consider it to be a separate disorder.

Frequency

Stickler syndrome affects an estimated 1 in 7,500 to 9,000 newborns. Type I is the most common form of the condition.

Causes

Mutations in several genes cause the different types of Stickler syndrome. Between 80 and 90 percent of all cases are classified as type I and are caused by mutations in the \(\text{COL2A1} \) gene. Another 10 to 20 percent of cases are classified as type II and result from mutations in the \(\text{COL11A1} \) gene. Marshall syndrome, which may be a variant of Stickler syndrome, is also caused by \(\text{COL11A1} \) gene mutations. Stickler syndrome types III through VI result from mutations in other, related genes.

All of the genes associated with Stickler syndrome provide instructions for making components of collagens, which are complex molecules that give structure and strength to the connective tissues that support the body's joints and organs. Mutations in any of these genes impair the production, processing, or assembly of collagen molecules. Defective collagen molecules or reduced amounts of collagen impair the development of connective tissues in many different parts of the body, leading to the varied features of Stickler syndrome.

Not all individuals with Stickler syndrome have mutations in one of the known genes. Researchers believe that mutations in other genes may also cause this condition, but those genes have not been identified.

Inheritance Pattern

Stickler syndrome types I, II, and III are inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In some cases, an affected person inherits a gene mutation from one affected parent. Other cases result from new mutations. These cases occur in people with no history of Stickler syndrome in their family.

Marshall syndrome also typically has an autosomal dominant pattern of inheritance.

Stickler syndrome types IV, V, and VI are inherited in an autosomal recessive pattern. Autosomal recessive inheritance means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.
Other Names for This Condition

- hereditary arthro-ophthalmo-dystrophy
- hereditary arthro-ophthalmopathy
- Stickler dysplasia

Diagnosis & Management

Genetic Testing Information

- What is genetic testing?
 /primer/testing/genetictesting

- Genetic Testing Registry: Marshall syndrome

- Genetic Testing Registry: Stickler syndrome

- Genetic Testing Registry: Stickler syndrome type 1

- Genetic Testing Registry: Stickler syndrome, type 2

- Genetic Testing Registry: Stickler syndrome, type 3

- Genetic Testing Registry: Stickler syndrome, type 4

- Genetic Testing Registry: Stickler syndrome, type 5

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22Stickler+syndrome%22+OR+%22Marshall+syndrome%22

Other Diagnosis and Management Resources

- GeneReview: Stickler Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1302

- GeneReview: Type II Collagen Disorders Overview
 https://www.ncbi.nlm.nih.gov/books/NBK540447

- MedlinePlus Encyclopedia: Pierre Robin Syndrome
 https://medlineplus.gov/ency/article/001607.htm
• Merck Manual Consumer Version: Detachment of the Retina

• Stickler Involved People: Stickler Syndrome Basic Information for Patients and Families

Additional Information & Resources

Health Information from MedlinePlus

• Encyclopedia: Pierre Robin Syndrome
 https://medlineplus.gov/ency/article/001607.htm

• Health Topic: Cleft Lip and Palate
 https://medlineplus.gov/cleftlipandpalate.html

• Health Topic: Connective Tissue Disorders
 https://medlineplus.gov/connectivetissuedisorders.html

• Health Topic: Hearing Disorders and Deafness
 https://medlineplus.gov/hearingdisordersanddeafness.html

Genetic and Rare Diseases Information Center

• Marshall syndrome

• Stickler syndrome

Additional NIH Resources

• National Institute of Arthritis and Musculoskeletal and Skin Diseases: Heritable Disorders of Connective Tissue
 https://www.niams.nih.gov/health-topics/heritable-disorders-connective-tissue

Educational Resources

• American Association for Pediatric Ophthalmology and Strabismus
 https://aapos.org/browse/glossary/entry?GlossaryKey=15e430e1-2eda-4554-b746-ed7e4fbc309d

• MalaCards: stickler syndrome
 https://www.malacards.org/card/stickler_syndrome

• Orphanet: Marshall syndrome
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=560
• Orphanet: Stickler syndrome
https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=828

• UC Davis Children's Hospital

Patient Support and Advocacy Resources
• American Cleft Palate-Craniofacial Association
https://cleftline.org/

• National Organization for Rare Disorders (NORD): Marshall Syndrome
https://rarediseases.org/rare-diseases/marshall-syndrome/

• National Organization for Rare Disorders (NORD): Stickler Syndrome
https://rarediseases.org/rare-diseases/stickler-syndrome/

• Resource List from the University of Kansas Medical Center
http://www.kumc.edu/gec/support/stickler.html

• Stickler Involved People
http://stickler.org/

Clinical Information from GeneReviews
• Stickler Syndrome
https://www.ncbi.nlm.nih.gov/books/NBK1302

• Type II Collagen Disorders Overview
https://www.ncbi.nlm.nih.gov/books/NBK540447

Scientific Articles on PubMed
• PubMed
https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28Stickler+syndrome%5BTIAB%5D%29+OR+%28arthro-ophthalmopathy%5BTIAB%5D%29+OR+%28Marshall+syndrome%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM
• MARSHALL SYNDROME
http://omim.org/entry/154780

• OTOSPONDYLOMEGAEPHYSEAL DYSPLASIA, AUTOSOMAL DOMINANT
http://omim.org/entry/184840

• STICKLER SYNDROME, TYPE I
http://omim.org/entry/108300

• STICKLER SYNDROME, TYPE I, NONSYNDROMIC OCULAR
http://omim.org/entry/609508
• STICKLER SYNDROME, TYPE II
 http://omim.org/entry/604841

• STICKLER SYNDROME, TYPE IV
 http://omim.org/entry/614134

• STICKLER SYNDROME, TYPE V
 http://omim.org/entry/614284

Medical Genetics Database from MedGen

• Stickler syndrome

Sources for This Summary

• Acke FR, Dhooge IJ, Malfait F, De Leenheer EM. Hearing impairment in Stickler syndrome: a
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23110709
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3551705/

• Annunen S, Körkkö J, Czarny M, Warman ML, Brunner HG, Kääriäinen H, Mulliken JB, Tranebjaerg
 L, Brooks DG, Cox GF, Cruysberg JR, Curtis MA, Davenport SL, Friedrich CA, Kaitila I, Krawczynski MR,
 L. Splicing mutations of 54-bp exons in the COL11A1 gene cause Marshall syndrome, but other mutations
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10486316
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1288268/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21671392

• Faletra F, D'Adamo AP, Bruno I, Athanasakis E, Biskup S, Esposito L, Gasparini P. Autosomal
 recessive Stickler syndrome due to a loss of function mutation in the COL9A3 gene. Am J Med Genet A.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24273071

 Owain MA. Marshall syndrome: further evidence of a distinct phenotypic entity and report of new
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25073711
• Liberfarb RM, Levy HP, Rose PS, Wilkin DJ, Davis J, Balog JZ, Griffith AJ, Szymko-Bennett YM,
Johnston JJ, Francomano CA, Tsilou E, Rubin BI. The Stickler syndrome: genotype/phenotype
 correlation in 10 families with Stickler syndrome resulting from seven mutations in the type II
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12544472

• Robin NH, Moran RT, Ala-Kokko L. Stickler Syndrome. 2000 Jun 9 [updated 2017 Mar 16]. In:
Pagon RA, Adam MP, Arndt HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N,
Mefford HC, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): University of
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301479

RM, Vanhoenacker F, Declau F, Van de Heyning P, Usami S. A new autosomal recessive form of
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16909383
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1559536/

Reprinted from Genetics Home Reference:

Reviewed: March 2016
Published: September 10, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services