Spondylothoracic dysostosis

Spondylothoracic dysostosis is a condition characterized by malformation of the bones of the spine and ribs. The bones of the spine (vertebrae) do not develop properly, which causes them to be misshapen and abnormally joined together (fused). The ribs are also fused at the part nearest the spine (posteriorly), which gives the rib cage its characteristic fan-like or "crab" appearance in x-rays. Affected individuals have short, rigid necks and short torsos because of the bone malformations. As a result, people with spondylothoracic dysostosis have short bodies but normal-length arms and legs, called short-trunk dwarfism.

The spine and rib abnormalities, which are present from birth, cause other signs and symptoms of spondylothoracic dysostosis. Infants with this condition have small chests that cannot expand adequately, often leading to life-threatening breathing problems. As the lungs expand in the narrow chest, the muscle that separates the abdomen from the chest cavity (the diaphragm) is forced down and the abdomen is pushed out. The increased pressure in the abdomen can cause a soft out-pouching around the lower abdomen (inguinal hernia) or belly-button (umbilical hernia).

Breathing problems can be fatal early in life; however, some affected individuals live into adulthood.

Spondylothoracic dysostosis is sometimes called spondylocostal dysostosis, a similar condition with abnormalities of the spine and ribs. The two conditions have been grouped in the past, and both are sometimes referred to as Jarcho-Levin syndrome; however, they are now considered distinct conditions.

Frequency

Spondylothoracic dysostosis affects about one in 200,000 people worldwide. However, it is much more common in people of Puerto Rican ancestry, affecting approximately one in 12,000 people.

Genetic Changes

The *MESP2* gene provides instructions for a protein that plays a critical role in the development of vertebrae. Specifically, it is involved in separating vertebrae and ribs from one another during early development, a process called somite segmentation. Mutations in the *MESP2* gene prevent the production of any protein or lead to the production of an abnormally short, nonfunctional protein. When the MESP2 protein is nonfunctional or absent, somite segmentation does not occur properly, which results in malformation and fusion of the bones of the spine and ribs seen in spondylothoracic dysostosis.
Inheritance Pattern

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

• Jarcho-Levin syndrome
• STD

Diagnosis & Management

Genetic Testing

• Genetic Testing Registry: Jarcho-Levin syndrome

Other Diagnosis and Management Resources

• Cleveland Clinic: Spine X-ray
 https://my.clevelandclinic.org/health/diagnostics/10229-spine-x-ray
• GeneReview: Spondylocostal Dysostosis, Autosomal Recessive
 https://www.ncbi.nlm.nih.gov/books/NBK8828

General Information from MedlinePlus

• Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
• Drug Therapy
 https://medlineplus.gov/drugtherapy.html
• Genetic Counseling
 https://medlineplus.gov/geneticcounseling.html
• Palliative Care
 https://medlineplus.gov/palliativecare.html
• Surgery and Rehabilitation
 https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources

MedlinePlus

• Health Topic: Dwarfism
 https://medlineplus.gov/dwarfism.html
• Health Topic: Spine Injuries and Disorders
 https://medlineplus.gov/spineinjuriesanddisorders.html
Genetic and Rare Diseases Information Center

- Spondylothoracic dysostosis
 https://rarediseases.info.nih.gov/diseases/6798/spondylothoracic-dysostosis

Educational Resources

- Disease InfoSearch: Spondylothoracic dysostosis
 http://www.diseaseinfosearch.org/Spondylothoracic+dysostosis/6845
- KidsHealth: Dwarfism
- Nemours Children's Health System: Skeletal Dysplasia
 https://www.nemours.org/service/medical/skeletal-dysplasia.html?tab=about

Patient Support and Advocacy Resources

- Human Growth Foundation
 http://hgfound.org/
- International Skeletal Dysplasia Registry, UCLA
 http://ortho.ucla.edu/isdr
- Little People of America
- Little People UK
 http://littlepeopleuk.org/
- Resource list from University of Kansas Medical Center: Dwarfism
 http://www.kumc.edu/gec/support/dwarfism.html

GeneReviews

- Spondylocostal Dysostosis, Autosomal Recessive
 https://www.ncbi.nlm.nih.gov/books/NBK8828

ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22spondylothoracic+dysostosis%22+OR+%22Bone+Dysplasia%22

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%22spondylothoracic+dysostosis%22+OR+%22Jarcho-Levin+Syndrome%5BTIAB%5D%29+AND+english%5BLa%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22+OR+%22Bdp%5D
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21174082

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15214000

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18485326
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2427230/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/1951427

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15902259

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21098559

Reviewed: June 2016
Published: March 13, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services