Spondylocostal dysostosis

Spondylocostal dysostosis is a group of conditions characterized by abnormal development of bones in the spine and ribs. The bones of the spine (vertebrae) are misshapen and abnormally joined together (fused). Many people with this condition have abnormal side-to-side curvature of the spine (scoliosis) due to malformation of the vertebrae. In addition to spinal abnormalities, some of the rib bones may be fused together or missing. Affected individuals have short, rigid necks and short torsos because of the bone malformations. As a result, people with spondylocostal dysostosis have short bodies but normal-length arms and legs, called short-trunk dwarfism.

The spine and rib abnormalities, which are present from birth, cause other signs and symptoms of spondylocostal dysostosis. Infants with this condition have small chests that cannot expand adequately, often leading to life-threatening breathing problems. As the lungs expand in the narrow chest, the muscle that separates the abdomen from the chest cavity (the diaphragm) is forced down and the abdomen is pushed out. The increased pressure in the abdomen can cause a soft out-pouching around the lower abdomen (inguinal hernia), particularly in males with spondylocostal dysostosis.

Some people with spondylocostal dysostosis also have a type of birth defect known as a neural tube defect. Neural tube defects occur when a structure called the neural tube, a layer of cells that ultimately develops into the brain and spinal cord, fails to close completely during the first few weeks of embryonic development. Examples of neural tube defects that occur in people with spondylocostal dysostosis include a spinal cord abnormality known as spina bifida and a brain abnormality called a Chiari malformation.

Although breathing problems can be fatal early in life, many affected individuals live into adulthood.

Spondylocostal dysostosis has often been grouped with a similar condition called spondylothoracic dysostosis, and both are sometimes called Jarcho-Levin syndrome; however, they are now considered distinct conditions.

Frequency

Spondylocostal dysostosis is a rare condition, although its exact prevalence is unknown.

Causes

Mutations in several genes are known to cause spondylocostal dysostosis. The most common form of the condition, spondylocostal dysostosis type 1, is caused by mutations in the DLL3 gene. Mutations in other identified genes each account for a small number of cases of the condition.
The DLL3 gene and other genes involved in spondylocostal dysostosis play roles in the Notch signaling pathway, which is important in embryonic development. One of the functions of Notch signaling is directing the separation of future vertebrae and ribs from one another during early development, a process called somite segmentation. When the Notch signaling pathway is disrupted, somite segmentation does not occur properly, resulting in the malformation and fusion of the bones of the spine and ribs seen in spondylocostal dysostosis.

Mutations in the identified genes account for approximately 25 percent of cases of spondylocostal dysostosis. Researchers suggest that additional genes involved in the Notch signaling pathway might also be associated with the condition.

Inheritance Pattern

Spondylocostal dysostosis can have different inheritance patterns. Most types, including type 1, are inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. Other types of spondylocostal dysostosis are inherited in an autosomal dominant pattern. Autosomal dominant inheritance means that one copy of an altered gene in each cell is sufficient to cause the disorder. The signs and symptoms of spondylocostal dysostosis are typically more severe with autosomal recessive inheritance.

Other Names for This Condition

- Jarcho-Levin syndrome
- SCDO

Diagnosis & Management

Genetic Testing Information

- What is genetic testing? /primer/testing/genetictesting
• Genetic Testing Registry: Spondylocostal dysostosis 5

• Genetic Testing Registry: Spondylocostal dysostosis 6, autosomal recessive

Other Diagnosis and Management Resources

• GeneReview: Spondylocostal Dysostosis, Autosomal Recessive
 https://www.ncbi.nlm.nih.gov/books/NBK88828

• KidsHealth: X-Ray Exam (Scoliosis)

• MedlinePlus Encyclopedia: Scoliosis
 https://medlineplus.gov/ency/article/001241.htm

Additional Information & Resources

Health Information from MedlinePlus

• Encyclopedia: Scoliosis
 https://medlineplus.gov/ency/article/001241.htm

• Health Topic: Chiari Malformation
 https://medlineplus.gov/chiarimalformation.html

• Health Topic: Neural Tube Defects
 https://medlineplus.gov/neuraltubedefects.html

• Health Topic: Scoliosis
 https://medlineplus.gov/scoliosis.html

• Health Topic: Spina Bifida
 https://medlineplus.gov/spinabifida.html

• Health Topic: Spine Injuries and Disorders
 https://medlineplus.gov/spineinjuriesanddisorders.html

Genetic and Rare Diseases Information Center

• Spondylocostal dysostosis
 https://rarediseases.info.nih.gov/diseases/12174/spondylocostal-dysostosis
Additional NIH Resources

• National Institute of Arthritis and Musculoskeletal and Skin Diseases: Scoliosis
 https://www.niams.nih.gov/health-topics/scoliosis

• National Institute of Neurological Disorders and Stroke: Chiari Malformation Fact Sheet
 https://www.ninds.nih.gov/Disorders/All-Disorders/Chiari-Malformation-Information-Page

• National Institute of Neurological Disorders and Stroke: Spina Bifida Fact Sheet
 https://www.ninds.nih.gov/Disorders/All-Disorders/Spina-bifida-Information-Page

Educational Resources

• KidsHealth: Dwarfism

• MalaCards: spondylocostal dysostosis 1
 https://www.malacards.org/card/spondylocostal_dysostosis_1

• National Organization for Rare Disorders (NORD): Jarcho-Levin Syndrome
 https://rarediseases.org/rare-diseases/jarcho-levin-syndrome/

• Orphanet: Autosomal dominant spondylocostal dysostosis
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=1797

• Orphanet: Autosomal recessive spondylocostal dysostosis
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=2311

Patient Support and Advocacy Resources

• Little People of America
 https://www.lpaonline.org/

• Little People UK
 https://littlepeopleuk.org/

• Scoliosis Research Society
 https://www.srs.org/

• Spina Bifida Association
 https://www.spinabifidaassociation.org/

Clinical Information from GeneReviews

• Spondylocostal Dysostosis, Autosomal Recessive
 https://www.ncbi.nlm.nih.gov/books/NBK8828
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28spondylocostal+dysostosis%5BTIAB%5D%29+OR+%28spondylocostal+dysostosis%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- SPONDYLOCOSTAL DYSOSTOSIS 1, AUTOSOMAL RECESSIVE
 http://omim.org/entry/277300

- SPONDYLOCOSTAL DYSOSTOSIS 2, AUTOSOMAL RECESSIVE
 http://omim.org/entry/608681

- SPONDYLOCOSTAL DYSOSTOSIS 3, AUTOSOMAL RECESSIVE
 http://omim.org/entry/609813

- SPONDYLOCOSTAL DYSOSTOSIS 4, AUTOSOMAL RECESSIVE
 http://omim.org/entry/613686

- SPONDYLOCOSTAL DYSOSTOSIS 5
 http://omim.org/entry/122600

- SPONDYLOCOSTAL DYSOSTOSIS 6, AUTOSOMAL RECESSIVE
 http://omim.org/entry/616566

Sources for This Summary

- Dunwoodie SL. Reprint of mutation of the fucose-specific beta1,3 N-acetylglucosaminyltransferase LFNG results in abnormal formation of the spine. Biochim Biophys Acta. 2009 Sep;1792(9):862-73. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19899223

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25343988

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17600782

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18775957

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23335591

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15122512
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1182088/

Reviewed: June 2016
Published: April 15, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services