Smith-Lemli-Opitz syndrome

Smith-Lemli-Opitz syndrome is a developmental disorder that affects many parts of the body. This condition is characterized by distinctive facial features, small head size (microcephaly), intellectual disability or learning problems, and behavioral problems. Many affected children have the characteristic features of autism, a developmental condition that affects communication and social interaction. Malformations of the heart, lungs, kidneys, gastrointestinal tract, and genitalia are also common. Infants with Smith-Lemli-Opitz syndrome have weak muscle tone (hypotonia), experience feeding difficulties, and tend to grow more slowly than other infants. Most affected individuals have fused second and third toes (syndactyly), and some have extra fingers or toes (polydactyly).

The signs and symptoms of Smith-Lemli-Opitz syndrome vary widely. Mildly affected individuals may have only minor physical abnormalities with learning and behavioral problems. Severe cases can be life-threatening and involve profound intellectual disability and major physical abnormalities.

Frequency

Smith-Lemli-Opitz syndrome affects an estimated 1 in 20,000 to 60,000 newborns. This condition is most common in whites of European ancestry, particularly people from Central European countries such as Slovakia and the Czech Republic. It is very rare among African and Asian populations.

Causes

Mutations in the \textit{DHCR7} gene cause Smith-Lemli-Opitz syndrome. The \textit{DHCR7} gene provides instructions for making an enzyme called 7-dehydrocholesterol reductase. This enzyme is responsible for the final step in the production of cholesterol. Cholesterol is a waxy, fat-like substance that is produced in the body and obtained from foods that come from animals (particularly egg yolks, meat, poultry, fish, and dairy products). Cholesterol is necessary for normal embryonic development and has important functions both before and after birth. It is a structural component of cell membranes and the protective substance covering nerve cells (myelin). Additionally, cholesterol plays a role in the production of certain hormones and digestive acids.

Mutations in the \textit{DHCR7} gene reduce or eliminate the activity of 7-dehydrocholesterol reductase, preventing cells from producing enough cholesterol. A lack of this enzyme also allows potentially toxic byproducts of cholesterol production to build up in the blood, nervous system, and other tissues. The combination of low cholesterol levels and an accumulation of other substances likely disrupts the growth and development
of many body systems. It is not known, however, how this disturbance in cholesterol production leads to the specific features of Smith-Lemli-Opitz syndrome.

Inheritance Pattern

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

- 7-Dehydrocholesterol reductase deficiency
- RSH Syndrome
- SLO syndrome
- SLOS

Diagnosis & Management

Genetic Testing Information

- What is genetic testing?
 /primer/testing/genetictesting
- Genetic Testing Registry: Smith-Lemli-Opitz syndrome

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22smith-lemli-opitz+syndrome%22

Other Diagnosis and Management Resources

- GeneReview: Smith-Lemli-Opitz Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1143

Additional Information & Resources

Health Information from MedlinePlus

- Health Topic: Developmental Disabilities
 https://medlineplus.gov/developmentaldisabilities.html
- Health Topic: Lipid Metabolism Disorders
 https://medlineplus.gov/lipidmetabolismdisorders.html

Genetic and Rare Diseases Information Center

- Smith-Lemli-Opitz syndrome
Educational Resources

• Genetic Science Learning Center, University of Utah
 https://learn.genetics.utah.edu/content/disorders/singlegene/

• Kennedy Krieger Institute

• MalaCards: smith-lemli-opitz syndrome
 https://www.malacards.org/card/smith_lemli_opitz_syndrome

• Orphanet: Smith-Lemli-Opitz syndrome
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=818

Patient Support and Advocacy Resources

• National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/smith-lemli-opitz-syndrome/

• Resource list from the University of Kansas Medical Center
 http://www.kumc.edu/gec/support/smith-le.html

• Smith-Lemli-Opitz/RSH Foundation
 https://www.smithlemliopitz.org/

Clinical Information from GeneReviews

• Smith-Lemli-Opitz Syndrome
 https://www.ncbi.nlm.nih.gov/books/NBK1143

Scientific Articles on PubMed

• PubMed

Catalog of Genes and Diseases from OMIM

• SMITH-LEMLI-OPITZ SYNDROME
 http://omim.org/entry/270400

Sources for This Summary

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11453964

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301322

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11001807

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16761297

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16207203
Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1350989/

Reprinted from Genetics Home Reference:

Reviewed: July 2007
Published: September 10, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services