Severe congenital neutropenia

Severe congenital neutropenia is a condition that causes affected individuals to be prone to recurrent infections. People with this condition have a shortage (deficiency) of neutrophils, a type of white blood cell that plays a role in inflammation and in fighting infection. The deficiency of neutrophils, called neutropenia, is apparent at birth or soon afterward. It leads to recurrent infections beginning in infancy, including infections of the sinuses, lungs, and liver. Affected individuals can also develop fevers and inflammation of the gums (gingivitis) and skin. Approximately 40 percent of affected people have decreased bone density (osteopenia) and may develop osteoporosis, a condition that makes bones progressively more brittle and prone to fracture. In people with severe congenital neutropenia, these bone disorders can begin at any time from infancy through adulthood.

Approximately 20 percent of people with severe congenital neutropenia develop certain cancerous conditions of the blood, particularly myelodysplastic syndrome or leukemia during adolescence.

Some people with severe congenital neutropenia have additional health problems such as seizures, developmental delay, or heart and genital abnormalities.

Frequency

The incidence of severe congenital neutropenia is estimated to be 1 in 200,000 individuals.

Genetic Changes

Severe congenital neutropenia can result from mutations in one of many different genes. These genes play a role in the maturation and function of neutrophils, which are cells produced by the bone marrow. Neutrophils secrete immune molecules and ingest and break down foreign invaders.

Gene mutations that cause severe congenital neutropenia lead to the production of neutrophils that die off quickly or do not function properly. Some gene mutations result in unstable proteins that build up in neutrophils, leading to cell death. Other gene mutations result in proteins that impair the maturation or function of neutrophils, preventing these cells from responding appropriately to immune signals.

About half of all cases of severe congenital neutropenia are caused by mutations in the *ELANE* gene. Another 10 percent are caused by mutations in the *HAX1* gene. The other genes each account for only a small percentage of all cases of this condition. In about one-third of people with severe congenital neutropenia, the cause of the disorder is unknown.
Inheritance Pattern

Most cases of severe congenital neutropenia are classified as sporadic and occur in people with no apparent history of the disorder in their family. Some of these cases are associated with changes in specific genes; however in some cases the cause of the disorder is unknown.

When severe congenital neutropenia is caused by mutations in the ELANE gene, it is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. Mutations in a few other genes that cause this condition are also inherited in an autosomal dominant pattern.

When severe congenital neutropenia is caused by mutations in the HAX1 gene, it is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition. Many cases of this condition are caused by genetic mutations that are inherited in an autosomal recessive pattern.

In rare cases, severe congenital neutropenia is inherited in an X-linked recessive pattern. In these cases, the gene that causes the condition is located on the X chromosome, which is one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation would have to occur in both copies of the gene to cause the disorder. Because it is unlikely that females will have two altered copies of this gene, males are affected by X-linked recessive disorders much more frequently than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons.

Other Names for This Condition

- congenital agranulocytosis
- congenital neutropenia
- infantile genetic agranulocytosis
- Kostmann disease
- Kostmann's agranulocytosis
- Kostmann's syndrome
- severe infantile genetic neutropenia
Diagnosis & Management

Genetic Testing

- Genetic Testing Registry: Neutropenia, severe congenital, 7, autosomal recessive
- Genetic Testing Registry: Severe congenital neutropenia
- Genetic Testing Registry: Severe congenital neutropenia 2, autosomal dominant
- Genetic Testing Registry: Severe congenital neutropenia 3, autosomal recessive
- Genetic Testing Registry: Severe congenital neutropenia 4, autosomal recessive
- Genetic Testing Registry: Severe congenital neutropenia 5, autosomal recessive
- Genetic Testing Registry: Severe congenital neutropenia 6, autosomal recessive
- Genetic Testing Registry: Severe congenital neutropenia autosomal dominant
- Genetic Testing Registry: Severe congenital neutropenia X-linked

Other Diagnosis and Management Resources

- GeneReview: ELANE-Related Neutropenia
 https://www.ncbi.nlm.nih.gov/books/NBK1533
- GeneReview: G6PC3 Deficiency
 https://www.ncbi.nlm.nih.gov/books/NBK285321
- GeneReview: WAS-Related Disorders
 https://www.ncbi.nlm.nih.gov/books/NBK1178
- MedlinePlus Encyclopedia: Neutropenia--infants
 https://medlineplus.gov/ency/article/007230.htm

General Information from MedlinePlus

- Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
- Drug Therapy
 https://medlineplus.gov/drugtherapy.html
- Genetic Counseling
 https://medlineplus.gov/geneticcounseling.html
• Palliative Care
 https://medlineplus.gov/palliativecare.html
• Surgery and Rehabilitation
 https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources
 MedlinePlus
 • Encyclopedia: Neutropenia--infants
 https://medlineplus.gov/ency/article/007230.htm
 • Health Topic: Blood Disorders
 https://medlineplus.gov/blooddisorders.html

Additional NIH Resources
 • National Cancer Institute: Inherited Bone Marrow Failure Syndromes
 https://dceg.cancer.gov/research/what-we-study/bone-marrow-failure-syndromes

Educational Resources
 • Ann & Robert H. Lurie Children's Hospital of Chicago
 https://www.luriechildrens.org/en/specialties-conditions/neutropenia/
 • Disease InfoSearch: Severe congenital neutropenia autosomal dominant
 http://www.diseaseinfosearch.org/Severe+congenital+neutropenia+autosomal
 +dominant/6527
 • Disease InfoSearch: Severe congenital neutropenia autosomal recessive 3
 http://www.diseaseinfosearch.org/Severe+congenital+neutropenia+autosomal
 +recessive+3/6528
 • Disease InfoSearch: Severe congenital neutropenia X-linked
 http://www.diseaseinfosearch.org/Severe+congenital+neutropenia+X-linked/6529
 • Indiana Hemophilia & Thrombosis Center, Inc.
 https://www.ihtc.org/patient/blood-disorders/other-hematological-disorders/chronic-
 neutropenia/
 • MalaCards: severe congenital neutropenia
 http://www.malacards.org/card/severe_congenital_neutropenia
 • Merck Manual Consumer Version
 https://www.merckmanuals.com/home/blood-disorders/white-blood-cell-disorders/
 neutropenia
 • Orphanet: Severe congenital neutropenia
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=42738
Patient Support and Advocacy Resources

- National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/severe-chronic-neutropenia/
- The Severe Chronic Neutropenia International Registry
 https://depts.washington.edu/registry/

GeneReviews

- ELANE-Related Neutropenia
 https://www.ncbi.nlm.nih.gov/books/NBK1533
- G6PC3 Deficiency
 https://www.ncbi.nlm.nih.gov/books/NBK285321
- WAS-Related Disorders
 https://www.ncbi.nlm.nih.gov/books/NBK1178

ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22severe+congenital+neutropenia%22

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Neutropenia%5BMAJR%5D%29+AND+%28severe+congenital+neutropenia%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1440+days%22%5Bdp%5D

OMIM

- NEUTROPENIA, SEVERE CONGENITAL, 1, AUTOSOMAL DOMINANT
 http://omim.org/entry/202700
- NEUTROPENIA, SEVERE CONGENITAL, 2, AUTOSOMAL DOMINANT
 http://omim.org/entry/613107
- NEUTROPENIA, SEVERE CONGENITAL, 3, AUTOSOMAL RECESSIVE
 http://omim.org/entry/610738
- NEUTROPENIA, SEVERE CONGENITAL, 4, AUTOSOMAL RECESSIVE
 http://omim.org/entry/612541
- NEUTROPENIA, SEVERE CONGENITAL, 5, AUTOSOMAL RECESSIVE
 http://omim.org/entry/615285
- NEUTROPENIA, SEVERE CONGENITAL, 6, AUTOSOMAL RECESSIVE
 http://omim.org/entry/616022
• NEUTROPENIA, SEVERE CONGENITAL, 7, AUTOSOMAL RECESSIVE
 http://omim.org/entry/617014

• NEUTROPENIA, SEVERE CONGENITAL, X-LINKED
 http://omim.org/entry/300299

MedGen
• Severe congenital neutropenia

Sources for This Summary
• Berliner N. Lessons from congenital neutropenia: 50 years of progress in understanding
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18544696

 MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith
 RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington,
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301705

 Calvillo M, Matthes-Martin S, Morreale G, van 't Veer-Tazelaar N, de Wreede L, Al Seraihy A,
 C; Severe Aplastic Anemia the Inborn Error, and the Pediatric Disease Working Parties of the
 European Society for Blood and Marrow Transplantation (EBMT) and Stem Cell Transplant
 for Immunodeficiencies in Europe (SCETIDE). Stem cell transplantation in severe congenital
 neutropenia: an analysis from the European Society for Blood and Marrow Transplantation. Blood.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26185129

• Makaryan V, Zeidler C, Bolyard AA, Skokowa J, Rodger E, Kelley ML, Boxer LA, Bonilla MA,
 Newburger PE, Shimamura A, Zhu B, Rosenberg PS, Link DC, Welte K, Dale DC. The diversity of
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25427142
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380169/

• Rosenberg PS, Alter BP, Link DC, Stein S, Rodger E, Bolyard AA, Aprikyan AA, Bonilla MA, Dror
 Y, Kannourakis G, Newburger PE, Boxer LA, Dale DC. Neutrophil elastase mutations and risk of
 Nov 20.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18028488
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143022/

• Rosenthal EA, Makaryan V, Burt AA, Crosslin DR, Kim DS, Smith JD, Nickerson DA, Reiner AP,
 Rich SS, Jackson RD, Ganesh SK, Pollus LM, Qi L, Dale DC; University of Washington, Center for
 Mendelian Genomics, Jarvik GP. Association Between Absolute Neutrophil Count and Variation
 at TCIRG1: The NHLBI Exome Sequencing Project. Genet Epidemiol. 2016 Sep;40(6):470-4. doi:
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27229898
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5079157/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17989524
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720578/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25162927

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28593997

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19775295
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783282/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19120359

Reprinted from Genetics Home Reference:

Reviewed: September 2017
Published: May 22, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services