Pyruvate kinase deficiency

Pyruvate kinase deficiency is an inherited disorder that affects red blood cells, which carry oxygen to the body's tissues. People with this disorder have a condition known as chronic hemolytic anemia, in which red blood cells are broken down (undergo hemolysis) prematurely, resulting in a shortage of red blood cells (anemia). Specifically, pyruvate kinase deficiency is a common cause of a type of inherited hemolytic anemia called hereditary nonspherocytic hemolytic anemia. In hereditary nonspherocytic hemolytic anemia, the red blood cells do not assume a spherical shape as they do in some other forms of hemolytic anemia.

Chronic hemolytic anemia can lead to unusually pale skin (pallor), yellowing of the eyes and skin (jaundice), extreme tiredness (fatigue), shortness of breath (dyspnea), and a rapid heart rate (tachycardia). An enlarged spleen (splenomegaly), an excess of iron in the blood, and small pebble-like deposits in the gallbladder or bile ducts (gallstones) are also common in this disorder.

In people with pyruvate kinase deficiency, hemolytic anemia and associated complications may range from mild to severe. Some affected individuals have few or no symptoms. Severe cases can be life-threatening in infancy, and such affected individuals may require regular blood transfusions to survive. The symptoms of this disorder may get worse during an infection or pregnancy.

Frequency

Pyruvate kinase deficiency is the most common inherited cause of nonspherocytic hemolytic anemia. More than 500 affected families have been identified, and studies suggest that the disorder may be underdiagnosed because mild cases may not be identified.

Pyruvate kinase deficiency is found in all ethnic groups. Its prevalence has been estimated at 1 in 20,000 people of European descent. It is more common in the Old Order Amish population of Pennsylvania.

Causes

Pyruvate kinase deficiency is caused by mutations in the *PKLR* gene. The *PKLR* gene is active in the liver and in red blood cells, where it provides instructions for making an enzyme called pyruvate kinase. The pyruvate kinase enzyme is involved in a critical energy-producing process known as glycolysis. During glycolysis, the simple sugar glucose is broken down to produce adenosine triphosphate (ATP), the cell's main energy source.
PKLR gene mutations result in reduced pyruvate kinase enzyme function, causing a shortage of ATP in red blood cells and increased levels of other molecules produced earlier in the glycolysis process. The abnormal red blood cells are gathered up by the spleen and destroyed, causing hemolytic anemia and an enlarged spleen. A shortage of red blood cells to carry oxygen throughout the body leads to fatigue, pallor, and shortness of breath. Iron and a molecule called bilirubin are released when red blood cells are destroyed, resulting in an excess of these substances circulating in the blood. Excess bilirubin in the blood causes jaundice and increases the risk of developing gallstones.

Pyruvate kinase deficiency may also occur as an effect of other blood diseases, such as leukemia. These cases are called secondary pyruvate kinase deficiency and are not inherited.

Inheritance Pattern

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

- PK deficiency
- PKD

Diagnosis & Management

Genetic Testing Information

- What is genetic testing?
 /primer/testing/genetictesting
- Genetic Testing Registry: Pyruvate kinase deficiency of red cells

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22pyruvate+kinase+deficiency%22

Other Diagnosis and Management Resources

- Cincinnati Children’s Hospital Medical Center: Hemolytic Anemia
 https://www.cincinnatichildrens.org/health/h/hemolytic-anemia
- Johns Hopkins Medicine: Hemolytic Anemia
 https://www.hopkinsmedicine.org/health/conditions-and-diseases/hemolytic-anemia

page 2
Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Hemolytic anemia
 https://medlineplus.gov/ency/article/000571.htm
- Encyclopedia: Pyruvate kinase deficiency
 https://medlineplus.gov/ency/article/001197.htm
- Health Topic: Anemia
 https://medlineplus.gov/anemia.html
- Medical Tests: Bilirubin Blood Test
 https://medlineplus.gov/lab-tests/bilirubin-blood-test/

Genetic and Rare Diseases Information Center

- Pyruvate kinase deficiency
 https://rarediseases.info.nih.gov/diseases/7514/pyruvate-kinase-deficiency

Additional NIH Resources

- National Heart, Lung, and Blood Institute: What is Hemolytic Anemia?
 https://www.nhlbi.nih.gov/health-topics/hemolytic-anemia

Educational Resources

- MalaCards: pyruvate kinase deficiency of red cells
 https://www.malacards.org/card/pyruvate_kinase_deficiency_of_red_cells
- Orphanet: Hemolytic anemia due to red cell pyruvate kinase deficiency
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=766

Patient Support and Advocacy Resources

- Metabolic Support UK
 https://www.metabolicsupportuk.org/
- National Organization for Rare Disorders (NORD): Pyruvate Kinase Deficiency
 https://rarediseases.org/rare-diseases/pyruvate-kinase-deficiency/

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28pyruvate+kinase+deficiency%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1440+days%22+AND+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- PYRUVATE KINASE DEFICIENCY OF RED CELLS
 http://omim.org/entry/266200
Medical Genetics Database from MedGen

- Pyruvate kinase deficiency of red cells

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18420493

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10828047

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19519368

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18460648

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21815188

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17360088

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15982340

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19085939

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16051738

Reprinted from Genetics Home Reference:

Reviewed: April 2012
Published: March 31, 2020