Protein C deficiency

Protein C deficiency is a disorder that increases the risk of developing abnormal blood clots; the condition can be mild or severe.

Individuals with mild protein C deficiency are at risk of a type of blood clot known as a deep vein thrombosis (DVT). These clots occur in the deep veins of the arms or legs, away from the surface of the skin. A DVT can travel through the bloodstream and lodge in the lungs, causing a life-threatening blockage of blood flow known as a pulmonary embolism (PE). While most people with mild protein C deficiency never develop abnormal blood clots, certain factors can add to the risk of their development. These factors include increased age, surgery, inactivity, or pregnancy. Having another inherited disorder of blood clotting in addition to protein C deficiency can also influence the risk of abnormal blood clotting.

In severe cases of protein C deficiency, infants develop a life-threatening blood clotting disorder called purpura fulminans soon after birth. Purpura fulminans is characterized by the formation of blood clots in the small blood vessels throughout the body. These blood clots block normal blood flow and can lead to localized death of body tissue (necrosis). Widespread blood clotting uses up all available blood clotting proteins. As a result, abnormal bleeding occurs in various parts of the body, which can cause large, purple patches on the skin. Individuals who survive the newborn period may experience recurrent episodes of purpura fulminans.

Frequency

Mild protein C deficiency affects approximately 1 in 500 individuals. Severe protein C deficiency is rare and occurs in an estimated 1 in 4 million newborns.

Genetic Changes

Protein C deficiency is caused by mutations in the PROC gene. This gene provides instructions for making protein C, which is found in the bloodstream and is important for controlling blood clotting. Protein C blocks the activity of (inactivates) certain proteins that promote blood clotting.

Most of the mutations that cause protein C deficiency change single protein building blocks (amino acids) in protein C, which disrupts its ability to control blood clotting. Individuals with this condition do not have enough functional protein C to inactivate clotting proteins, which results in the increased risk of developing abnormal blood clots. Protein C deficiency can be divided into type I and type II based on how mutations in the PROC gene affect protein C. Type I is caused by PROC gene mutations that result in reduced levels of protein C, while type II is caused by PROC gene mutations that result in the production of an altered protein C with reduced activity. Both types of
mutations can be associated with mild or severe protein C deficiency; the severity is determined by the number of \textit{PROC} gene mutations an individual has.

\textbf{Inheritance Pattern}

Protein C deficiency is inherited in an autosomal dominant pattern, which means one altered copy of the \textit{PROC} gene in each cell is sufficient to cause mild protein C deficiency. Individuals who inherit two altered copies of this gene in each cell have severe protein C deficiency.

\textbf{Other Names for This Condition}

- hereditary thrombophilia due to protein C deficiency
- PROC deficiency

\textbf{Diagnosis & Management}

\textbf{Genetic Testing}

- Genetic Testing Registry: Thrombophilia, hereditary, due to protein C deficiency, autosomal dominant

\textbf{Other Diagnosis and Management Resources}

- MedlinePlus Encyclopedia: Congenital Protein C or S Deficiency
 https://medlineplus.gov/ency/article/000559.htm
- MedlinePlus Encyclopedia: Necrosis
 https://medlineplus.gov/ency/article/002266.htm
- MedlinePlus Encyclopedia: Protein C
 https://medlineplus.gov/ency/article/003659.htm
- MedlinePlus Encyclopedia: Purpura
 https://medlineplus.gov/ency/article/003232.htm

\textbf{General Information from MedlinePlus}

- Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
- Drug Therapy
 https://medlineplus.gov/drugtherapy.html
- Genetic Counseling
 https://medlineplus.gov/geneticcounseling.html
• Palliative Care
 https://medlineplus.gov/palliativedcare.html
• Surgery and Rehabilitation
 https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources

MedlinePlus
• Encyclopedia: Congenital Protein C or S Deficiency
 https://medlineplus.gov/ency/article/000559.htm
• Encyclopedia: Necrosis
 https://medlineplus.gov/ency/article/002266.htm
• Encyclopedia: Protein C
 https://medlineplus.gov/ency/article/003659.htm
• Encyclopedia: Purpura
 https://medlineplus.gov/ency/article/003232.htm
• Health Topic: Blood Clots
 https://medlineplus.gov/bloodclots.html
• Health Topic: Deep Vein Thrombosis
 https://medlineplus.gov/deepveinthrombosis.html
• Health Topic: Pulmonary Embolism
 https://medlineplus.gov/pulmonaryembolism.html

Genetic and Rare Diseases Information Center
• Protein C deficiency

Additional NIH Resources
• National Heart Lung and Blood Institute: Deep Vein Thrombosis
 https://www.nhlbi.nih.gov/health-topics/venous-thromboembolism
• National Heart Lung and Blood Institute: Pulmonary Embolism
 https://www.nhlbi.nih.gov/health-topics/venous-thromboembolism
Educational Resources

- Disease InfoSearch: Thrombophilia, hereditary, due to protein c deficiency, autosomal dominant
 http://www.diseaseinfosearch.org/Thrombophilia%2C+hereditary%2C+due+to+protein+c+deficiency%2C+autosomal+dominant/9396
- Disease InfoSearch: Thrombophilia, hereditary, due to protein c deficiency, autosomal recessive
 http://www.diseaseinfosearch.org/Thrombophilia%2C+hereditary%2C+due+to+protein+c+deficiency%2C+autosomal+recessive/9397
- MalaCards: protein c deficiency
 http://www.malacards.org/card/protein_c_deficiency
- Merck Manual Home Edition for Patients and Caregivers: Thrombophilia
 https://www.merckmanuals.com/home/blood-disorders/excessive-clotting/excessive-clotting
- Orphanet: Severe hereditary thrombophilia due to congenital protein C deficiency
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=745

Patient Support and Advocacy Resources

- National Blood Clot Alliance
 https://www.stoptheclot.org/

ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22protein+C+deficiency%22

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Protein+C+Deficiency%5BMAJR%5D%29+AND+%28protein+C+deficiency%5BTIAB%5D%29+AND+english%5BLa%5D+AND+human%5Bmh%5D+AND+%22last+1080+days%22%5Bdp%5D

OMIM

- THROMBOPHILIA DUE TO PROTEIN C DEFICIENCY, AUTOSOMAL DOMINANT
 http://omim.org/entry/176860
- THROMBOPHILIA DUE TO PROTEIN C DEFICIENCY, AUTOSOMAL RECESSIVE
 http://omim.org/entry/612304
Sources for This Summary

Reprinted from Genetics Home Reference:

Reviewed: May 2013
Published: July 17, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services