Pilomatrixoma

Pilomatrixoma, also known as pilomatrixoma, is a type of noncancerous (benign) skin tumor associated with hair follicles. Hair follicles are specialized structures in the skin where hair growth occurs. Pilomatrixomas occur most often on the head or neck, although they can also be found on the arms, torso, or legs. A pilomatrixoma feels like a small, hard lump under the skin. This type of tumor grows relatively slowly and usually does not cause pain or other symptoms. Most affected individuals have a single tumor, although rarely multiple pilomatrixomas can occur. If a pilomatrixoma is removed surgically, it tends not to grow back (recur).

Most pilomatrixomas occur in people under the age of 20. However, these tumors can also appear later in life. Almost all pilomatrixomas are benign, but a very small percentage are cancerous (malignant). Unlike the benign form, the malignant version of this tumor (known as a pilomatrix carcinoma) occurs most often in middle age or late in life.

Pilomatrixoma usually occurs without other signs or symptoms (isolated), but this type of tumor has also rarely been reported with inherited conditions. Disorders that can be associated with pilomatrixoma include Gardner syndrome, which is characterized by multiple growths (polyps) and cancers of the colon and rectum; myotonic dystrophy, which is a form of muscular dystrophy; and Rubinstein-Taybi syndrome, which is a condition that affects many parts of the body and is associated with an increased risk of both benign and malignant tumors.

Frequency

Pilomatrixoma is an uncommon tumor. The exact prevalence is unknown, but pilomatrixoma probably accounts for less than 1 percent of all benign skin tumors.

Causes

Mutations in the CTNNB1 gene are found in almost all cases of isolated pilomatrixoma. These mutations are somatic, which means they are acquired during a person's lifetime and are present only in tumor cells. Somatic mutations are not inherited.

The CTNNB1 gene provides instructions for making a protein called beta-catenin. This protein plays an important role in sticking cells together (cell adhesion) and in communication between cells. It is also involved in cell signaling as part of the Wnt signaling pathway. This pathway promotes the growth and division (proliferation) of cells and helps determine the specialized functions a cell will have (differentiation). Wnt signaling is involved in many aspects of development before birth, as well as the maintenance and repair of adult tissues.
Among its many activities, beta-catenin appears to be necessary for the normal function of hair follicles. This protein is active in cells that make up a part of the hair follicle known as the matrix. These cells divide and mature to form the different components of the hair follicle and the hair shaft. As matrix cells divide, the hair shaft is pushed upward and extends beyond the skin.

Mutations in the \textit{CTNNB1} gene lead to a version of beta-catenin that is always turned on (constitutively active). The overactive protein triggers matrix cells to divide too quickly and in an uncontrolled way, leading to the formation of a pilomatrixoma.

Most pilomatrix carcinomas, the malignant version of pilomatrixoma, also have somatic mutations in the \textit{CTNNB1} gene. It is unclear why some pilomatricomas are cancerous but most others are not.

\section*{Inheritance Pattern}

Most people with isolated pilomatrixoma do not have any other affected family members. However, rare families with multiple affected members have been reported. In these cases, the inheritance pattern of the condition (if any) is unknown.

\section*{Other Names for This Condition}

- benign pilomatrixoma
- benign pilomatrixoma
- calcifying epithelioma of Malherbe
- Malherbe calcifying epithelioma
- pilomatrixoma

\section*{Diagnosis & Management}

\subsection*{Genetic Testing Information}

- What is genetic testing? \\
 \url{https://www.ncbi.nlm.nih.gov/gtr/conditions/C0206711/}

\subsection*{Research Studies from ClinicalTrials.gov}

- ClinicalTrials.gov \\
 \url{https://clinicaltrials.gov/ct2/results?cond=pilomatrixoma%22}

\subsection*{Additional Information & Resources}

- Health Information from MedlinePlus \\
 \url{https://medlineplus.gov/benigntumors.html}
Genetic and Rare Diseases Information Center

- Pilomatrixoma
 https://rarediseases.info.nih.gov/diseases/9452/pilomatrixoma

Educational Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Tumors/PilomatrixomaID5153.html
- Lucile Packard Children’s Hospital at Stanford
- MalaCards: pilomatrixoma
 https://www.malacards.org/card/pilomatrixoma
- Orphanet: Pilomatrixoma
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=91414

Patient Support and Advocacy Resources

- American Cancer Society
 https://www.cancer.org/

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Pilomatrixoma%5BMAJR%5D%29+AND+%28%28pilomatrixoma*%5BTIAB%5D%29+OR+%28pilomatricoma*%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1440+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- PILOMATRIXOMA
 http://omim.org/entry/132600

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10192393
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9704827
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14676160
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15606674

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11703283

Reviewed: June 2012
Published: March 12, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services