Phosphoglycerate kinase deficiency

Phosphoglycerate kinase deficiency is a genetic disorder that affects the body's ability to break down the simple sugar glucose, which is the primary energy source for most cells. Researchers have described two major forms of the condition. The most common form is sometimes called the hemolytic form. It is characterized by a condition known as chronic hemolytic anemia, in which red blood cells are broken down (undergo hemolysis) prematurely. Chronic hemolytic anemia can lead to unusually pale skin (pallor), yellowing of the eyes and skin (jaundice), fatigue, shortness of breath, and a rapid heart rate. Some people with the hemolytic form also have symptoms related to abnormal brain function, including intellectual disability, seizures, and stroke.

The other form of phosphoglycerate kinase deficiency is often called the myopathic form. It primarily affects muscles, causing progressive weakness, pain, and cramping, particularly with exercise. During exercise, muscle tissue can be broken down, releasing a protein called myoglobin. This protein is processed by the kidneys and released in the urine (myoglobinuria). If untreated, myoglobinuria can lead to kidney failure.

Most people with phosphoglycerate kinase deficiency have either the hemolytic form or the myopathic form. However, other combinations of signs and symptoms (such as muscle weakness with neurologic symptoms) have also been reported.

Frequency

Phosphoglycerate kinase deficiency appears to be a rare disorder. About 30 families with affected members have been reported in the scientific literature.

Causes

Phosphoglycerate kinase deficiency is caused by mutations in the PGK1 gene. This gene provides instructions for making an enzyme called phosphoglycerate kinase, which is involved in a critical energy-producing process in cells known as glycolysis. During glycolysis, the simple sugar glucose is broken down to produce energy.

Mutations in the PGK1 gene reduce the activity of phosphoglycerate kinase, which disrupts energy production and leads to cell damage or cell death. It is unclear why this abnormality preferentially affects red blood cells and brain cells in some people and muscle cells in others. Researchers speculate that different PGK1 gene mutations may have varying effects on the activity of phosphoglycerate kinase in different types of cells.
Inheritance Pattern

This condition is inherited in an X-linked recessive pattern. The *PGK1* gene is located on the X chromosome, which is one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation would have to occur in both copies of the gene to cause the disorder. Females with one altered *PGK1* gene, however, may have some features of phosphoglycerate kinase deficiency, such as anemia. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons.

Other Names for This Condition

- PGK deficiency
- PGK1 deficiency
- phosphoglycerate kinase 1 deficiency

Diagnosis & Management

Genetic Testing Information

- What is genetic testing? [primer/testing/genetic-testing](/primer/testing/genetic-testing)

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov https://clinicaltrials.gov/ct2/results?cond=%22phosphoglycerate+kinase+deficiency%22

Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Hemolytic Anemia https://medlineplus.gov/ency/article/000571.htm
- Health Topic: Anemia https://medlineplus.gov/anemia.html
- Health Topic: Carbohydrate Metabolism Disorders https://medlineplus.gov/carbohydratemetabolismdisorders.html
• Health Topic: Genetic Brain Disorders
 https://medlineplus.gov/geneticbraindisorders.html

• Health Topic: Muscle Disorders
 https://medlineplus.gov/muscledisorders.html

Genetic and Rare Diseases Information Center
• Phosphoglycerate kinase deficiency
 https://rarediseases.info.nih.gov/diseases/7389/phosphoglycerate-kinase-deficiency

Educational Resources
• European Network for Rare and Congenital Anemias (ENERCA)
 https://www.enerca.org/anaemias/40/phosphoglycerate-kinase-deficiency

• MalaCards: phosphoglycerate kinase deficiency
 https://www.malacards.org/card/phosphoglycerate_kinase_deficiency

• Neuromuscular Disease Center, Washington University
 https://neuromuscular.wustl.edu/msys/glycogen.html#pgk

• Orphanet: Glycogen storage disease due to phosphoglycerate kinase 1 deficiency
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=713

Patient Support and Advocacy Resources
• Muscular Dystrophy Association
 https://www.mda.org/disease/metabolic-myopathies

• National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/phosphoglycerate-kinase-deficiency/

• Resource list from the University of Kansas Medical Center: Metabolic Conditions
 http://www.kumc.edu/gec/support/metaboli.html

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28phosphoglycerate+kinase+deficiency%5BTIAB%5D%29+OR+%28PGK+deficiency%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D

Catalog of Genes and Diseases from OMIM
• PHOSPHOGLYCERATE KINASE 1 DEFICIENCY
 http://omim.org/entry/300653
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10809925

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17222195

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16740138

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16412025

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20151463

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19157875

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17661373

Reprinted from Genetics Home Reference:

Reviewed: December 2011
Published: August 17, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services