Phosphoglycerate dehydrogenase deficiency

Phosphoglycerate dehydrogenase deficiency is a condition characterized by an unusually small head size (microcephaly); impaired development of physical reactions, movements, and speech (psychomotor retardation); and recurrent seizures (epilepsy). Different types of phosphoglycerate dehydrogenase deficiency have been described; they are distinguished by their severity and the age at which symptoms first begin. Most affected individuals have the infantile form, which is the most severe form, and are affected from infancy. Symptoms of the juvenile and adult types appear later in life; these types are very rare.

In phosphoglycerate dehydrogenase deficiency there is a progressive loss of brain cells leading to a loss of brain tissue (brain atrophy), specifically affecting the fatty tissue known as myelin that surrounds nerve cells (hypomyelination). Frequently, the tissue that connects the two halves of the brain (corpus callosum) is small and thin, and the fluid-filled cavities (ventricles) near the center of the brain are enlarged. Because development of the brain is disrupted, the head does not grow at the same rate as the body, so it appears that the head is getting smaller as the body grows (progressive microcephaly). Poor brain growth leads to an inability to achieve many developmental milestones such as sitting unsupported and speaking. Many affected infants also have difficulty feeding.

The seizures in phosphoglycerate dehydrogenase deficiency can vary in type. Recurrent muscle contractions called infantile spasms are typical early in the disorder. Without early treatment, seizures may progress to tonic-clonic seizures, which involve a loss of consciousness, muscle rigidity, and convulsions; myoclonic seizures, which involve rapid, uncontrolled muscle jerks; or drop attacks, which are sudden episodes of weak muscle tone.

Individuals with the infantile form of phosphoglycerate dehydrogenase deficiency develop many of the features described above. Individuals with the juvenile form typically have epilepsy as well as mild developmental delay and intellectual disability. Only one case of the adult form has been reported; signs and symptoms began in mid-adulthood and included mild intellectual disability; difficulty coordinating movements (ataxia); and numbness, tingling, and pain in the arms and legs (sensory neuropathy).

Frequency

This condition is likely a rare disorder, but its prevalence is unknown. At least 15 cases have been described in the scientific literature.
Causes

Mutations in the $PHGDH$ gene cause phosphoglycerate dehydrogenase deficiency. The $PHGDH$ gene provides instructions for making the parts (subunits) that make up the phosphoglycerate dehydrogenase enzyme. Four PHGDH subunits combine to form the enzyme. This enzyme is involved in the production of the protein building block (amino acid) serine. Specifically, the enzyme converts a substance called 3-phosphoglycerate to 3-phosphohydroxypyruvate in the first step in serine production. Serine is necessary for the development and function of the brain and spinal cord (central nervous system). Serine is a part of chemical messengers called neurotransmitters that transmit signals in the nervous system. Proteins that form cell membranes and myelin also contain serine. Serine can be obtained from the diet, but brain cells must produce their own serine because dietary serine cannot cross the protective barrier that allows only certain substances to pass between blood vessels and the brain (the blood-brain barrier).

$PHGDH$ gene mutations result in the production of an enzyme with decreased function. As a result, less 3-phosphoglycerate is converted into 3-phosphohydroxypyruvate than normal and serine production is stalled at the first step. The lack of serine likely prevents the production of proteins and neurotransmitters in the brain and impairs the formation of normal cells and myelin. These disruptions in normal brain development lead to the signs and symptoms of phosphoglycerate dehydrogenase deficiency.

Inheritance Pattern

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

- 3-PGDH deficiency
- 3-phosphoglycerate dehydrogenase deficiency
- PHGDH deficiency

Diagnosis & Management

Genetic Testing Information

- What is genetic testing? /primer/testing/genetictesting
Other Diagnosis and Management Resources

- Seattle Children's Hospital: Epilepsy Symptoms and Diagnosis
 https://www.seattlechildrens.org/conditions/brain-nervous-system-mental-conditions/epilepsy

Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Microcephaly
 https://medlineplus.gov/ency/article/003272.htm

- Health Topic: Amino Acid Metabolism Disorders
 https://medlineplus.gov/aminoacidmetabolismdisorders.html

- Health Topic: Developmental Disabilities
 https://medlineplus.gov/developmentaldisabilities.html

- Health Topic: Genetic Brain Disorders
 https://medlineplus.gov/geneticbraindisorders.html

- Health Topic: Seizures
 https://medlineplus.gov/seizures.html

Additional NIH Resources

- National Institute of Neurological Disorders and Stroke: Microcephaly Information Page
 https://www.ninds.nih.gov/Disorders/All-Disorders/Microcephaly-Information-Page

- National Institute of Neurological Disorders and Stroke: Seizures and Epilepsy: Hope Through Research

Educational Resources

- Boston Children’s Hospital: Microcephaly in Children
 http://www.childrenshospital.org/conditions-and-treatments/conditions/m/microcephaly

- Centers for Disease Control and Prevention: Facts about Developmental Disabilities
 https://www.cdc.gov/ncbddd/developmentaldisabilities/facts.html

- Great Ormond Street Hospital for Children (UK): Epilepsy
 https://www.gosh.nhs.uk/conditions-and-treatments/conditions-we-treat/epilepsy

- Johns Hopkins Medicine: Epilepsy and Seizures: Conditions We Treat
 https://www.hopkinsmedicine.org/neurology_neurosurgery/centers_clinics/epilepsy/conditions.html
• Kennedy Krieger Institute: Developmental Disorders
 https://www.kennedykrieger.org/patient-care/conditions/developmental-disorders

• MalaCards: phosphoglycerate dehydrogenase deficiency
 https://www.malacards.org/card/phosphoglycerate_dehydrogenase_deficiency

• Orphanet: 3-phosphoglycerate dehydrogenase deficiency, infantile/juvenile form
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=79351

Patient Support and Advocacy Resources

• American Association on Intellectual and Developmental Disabilities (AAIDD)
 https://www.aaidd.org/

• Metabolic Support UK
 https://www.metabolicsupportuk.org/

• Resource List from the University of Kansas Medical Center: Developmental Delay/Mental Retardation
 http://www.kumc.edu/gec/support/devdelay.html

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28phosphoglycerate+dehydrogenase+deficiency%5BTIAB%5D%29+OR+%283-phosphoglycerate+dehydrogenase+deficiency%5BTIAB%5D%29+OR+%283-pgdh+deficiency%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

• PHOSPHOGLYCERATE DEHYDROGENASE DEFICIENCY
 http://omim.org/entry/601815

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23564319

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19963421

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21113737
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3026672/
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19235232

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15610810

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15021249

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23463425

Reprinted from Genetics Home Reference:

Reviewed: May 2014
Published: October 29, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services