Phenylketonuria

Phenylketonuria (commonly known as PKU) is an inherited disorder that increases the levels of a substance called phenylalanine in the blood. Phenylalanine is a building block of proteins (an amino acid) that is obtained through the diet. It is found in all proteins and in some artificial sweeteners. If PKU is not treated, phenylalanine can build up to harmful levels in the body, causing intellectual disability and other serious health problems.

The signs and symptoms of PKU vary from mild to severe. The most severe form of this disorder is known as classic PKU. Infants with classic PKU appear normal until they are a few months old. Without treatment, these children develop permanent intellectual disability. Seizures, delayed development, behavioral problems, and psychiatric disorders are also common. Untreated individuals may have a musty or mouse-like odor as a side effect of excess phenylalanine in the body. Children with classic PKU tend to have lighter skin and hair than unaffected family members and are also likely to have skin disorders such as eczema.

Less severe forms of this condition, sometimes called variant PKU and non-PKU hyperphenylalaninemia, have a smaller risk of brain damage. People with very mild cases may not require treatment with a low-phenylalanine diet.

Babies born to mothers who have PKU and uncontrolled phenylalanine levels (women who no longer follow a low-phenylalanine diet) have a significant risk of intellectual disability because they are exposed to very high levels of phenylalanine before birth. These infants may also have a low birth weight and grow more slowly than other children. Other characteristic medical problems include heart defects or other heart problems, an abnormally small head size (microcephaly), and behavioral problems. Women with PKU and uncontrolled phenylalanine levels also have an increased risk of pregnancy loss.

Frequency

The occurrence of PKU varies among ethnic groups and geographic regions worldwide. In the United States, PKU occurs in 1 in 10,000 to 15,000 newborns. Most cases of PKU are detected shortly after birth by newborn screening, and treatment is started promptly. As a result, the severe signs and symptoms of classic PKU are rarely seen.

Causes

Mutations in the PAH gene cause phenylketonuria. The PAH gene provides instructions for making an enzyme called phenylalanine hydroxylase. This enzyme converts the amino acid phenylalanine to other important compounds in the body. If gene mutations reduce the activity of phenylalanine hydroxylase, phenylalanine from the diet is not
processed effectively. As a result, this amino acid can build up to toxic levels in the blood and other tissues. Because nerve cells in the brain are particularly sensitive to phenylalanine levels, excessive amounts of this substance can cause brain damage.

Classic PKU, the most severe form of the disorder, occurs when phenylalanine hydroxylase activity is severely reduced or absent. People with untreated classic PKU have levels of phenylalanine high enough to cause severe brain damage and other serious health problems. Mutations in the \textit{PAH} gene that allow the enzyme to retain some activity result in milder versions of this condition, such as variant PKU or non-PKU hyperphenylalaninemia.

Changes in other genes may influence the severity of PKU, but little is known about these additional genetic factors.

\textbf{Inheritance Pattern}

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

\textbf{Other Names for This Condition}

\begin{itemize}
 \item deficiency disease, phenylalanine hydroxylase
 \item Folling disease
 \item Folling’s disease
 \item PAH deficiency
 \item Phenylalanine Hydroxylase Deficiency
 \item phenylalanine hydroxylase deficiency
 \item phenylalanine hydroxylase deficiency disease
 \item PKU
\end{itemize}

\textbf{Diagnosis & Management}

\textbf{Formal Diagnostic Criteria}

\begin{itemize}
 \item ACT Sheet: Increased phenylalanine
 \url{https://www.ncbi.nlm.nih.gov/books/NBK55827/bin/Phenylalanine.pdf}
\end{itemize}

\textbf{Formal Treatment/Management Guidelines}

\begin{itemize}
 \item National PKU Alliance: Medical and Dietary Guidelines for PKU
 \url{https://www.npkua.org/Education/PKU-Medical-Guidelines}
\end{itemize}
Genetic Testing Information

- What is genetic testing?
 /primer/testing/genetictesting

- Genetic Testing Registry: Phenylketonuria

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22phenylketonuria%22

Other Diagnosis and Management Resources

- Baby’s First Test
 https://www.babysfirsttest.org/newborn-screening/conditions/classic-phenylketonuria-pku

- GeneReview: Phenylalanine Hydroxylase Deficiency
 https://www.ncbi.nlm.nih.gov/books/NBK1504

- MedlinePlus Encyclopedia: Phenylketonuria
 https://medlineplus.gov/ency/article/001166.htm

- MedlinePlus Encyclopedia: Serum Phenylalanine Screening
 https://medlineplus.gov/ency/article/003362.htm

Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Phenylketonuria
 https://medlineplus.gov/ency/article/001166.htm

- Encyclopedia: Serum Phenylalanine Screening
 https://medlineplus.gov/ency/article/003362.htm

- Health Topic: Newborn Screening
 https://medlineplus.gov/newbornscreening.html

- Health Topic: Phenylketonuria
 https://medlineplus.gov/phenylketonuria.html

Genetic and Rare Diseases Information Center

- Phenylketonuria
 https://rarediseases.info.nih.gov/diseases/7383/phenylketonuria
Additional NIH Resources

• National Human Genome Research Institute
 https://www.genome.gov/25020037/

• National Institute of Child Health and Human Development
 https://www.nichd.nih.gov/health/topics/pku

Educational Resources

• Genetic Science Learning Center, University of Utah
 https://learn.genetics.utah.edu/content/disorders/singlegene/

• MalaCards: phenylketonuria
 https://www.malacards.org/card/phenylketonuria

• March of Dimes

• New England Consortium of Metabolic Programs

• Orphanet: Phenylketonuria
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=716

• Screening, Technology, and Research in Genetics
 http://www.newbornscreening.info/Parents/aminoaciddisorders/PKU.html

• Swedish Information Center for Rare Diseases
 http://www.socialstyrelsen.se/rarediseases/phenylketonuria

• Virginia Department of Health

• Your Genes Your Health from Cold Spring Harbor Laboratory
 http://www.ygyh.org/pku/whatisit.htm

Patient Support and Advocacy Resources

• Metabolic Support UK
 https://www.metabolicsupportuk.org/

• National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/phenylketonuria/

• National PKU Alliance
 https://npkua.org/

• National PKU News
 https://pkunews.org/
• NBS Connect
 https://nbs.patientcrossroads.org/
• Resource List from the University of Kansas Medical Center
 http://www.kumc.edu/gec/support/pku.html
• University of Washington PKU Clinic
 http://depts.washington.edu/pku/

Clinical Information from GeneReviews

• Phenylalanine Hydroxylase Deficiency
 https://www.ncbi.nlm.nih.gov/books/NBK1504

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Phenylketonurias%5BMAJR%5D%29+AND+%28%28phenylketonuria%5BRT%5D%29%29+OR+%28folling+disease%5BRT%5D%29+OR+%28pku%5BRT%5D%29%29+AND+english%5BLan%5D+AND+human%5Bmh%5D+AND+%22last+360+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

• PHENYLKETONURIA
 http://omim.org/entry/261600

Sources for This Summary

• Scriver CR. The PAH gene, phenylketonuria, and a paradigm shift. Hum Mutat. 2007 Sep;28(9):831-45. Review. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17443661
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12961938

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17513425

Reprinted from Genetics Home Reference:

Reviewed: October 2017
Published: October 30, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services