Pfeiffer syndrome

Pfeiffer syndrome is a genetic disorder characterized by the premature fusion of certain skull bones (craniosynostosis). This early fusion prevents the skull from growing normally and affects the shape of the head and face. Pfeiffer syndrome also affects bones in the hands and feet.

Many of the characteristic facial features of Pfeiffer syndrome result from premature fusion of the skull bones. Abnormal growth of these bones leads to bulging and wide-set eyes, a high forehead, an underdeveloped upper jaw, and a beaked nose. More than half of all children with Pfeiffer syndrome have hearing loss; dental problems are also common.

In people with Pfeiffer syndrome, the thumbs and first (big) toes are wide and bend away from the other digits. Unusually short fingers and toes (brachydactyly) are also common, and there may be some webbing or fusion between the digits (syndactyly).

Pfeiffer syndrome is divided into three subtypes. Type 1, also known as classic Pfeiffer syndrome, has symptoms as described above. Most individuals with type 1 Pfeiffer syndrome have normal intelligence and a normal life span. Types 2 and 3 are more severe forms of Pfeiffer syndrome that often involve problems with the nervous system. The premature fusion of skull bones can limit brain growth, leading to delayed development and other neurological problems. In addition, individuals with type 2 or 3 can have fusion of the bones (ankylosis) in the elbow or other joints, limiting mobility, and abnormalities of the face and airways, which can cause life-threatening breathing problems. Type 2 is distinguished from type 3 by the presence of a cloverleaf-shaped head, which is caused by more extensive fusion of bones in the skull.

Frequency

Pfeiffer syndrome affects about 1 in 100,000 individuals.

Causes

Pfeiffer syndrome is most commonly caused by mutations in the *FGFR2* gene. Mutations in the *FGFR1* gene cause a small percentage of cases of type 1 Pfeiffer syndrome. Mutations in this gene have not been associated with type 2 or 3.

The *FGFR1* and *FGFR2* genes provide instructions for making proteins known as fibroblast growth factor receptors 1 and 2, respectively. Among their multiple functions, these proteins signal immature cells to become bone cells during embryonic development. A mutation in either the *FGFR1* or *FGFR2* gene alters the function of the respective protein, causing prolonged signaling, which can promote the premature fusion of skull bones and affect the development of bones in the hands and feet.
Inheritance Pattern

This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.

Other Names for This Condition

• acrocephalosyndactyly, type V
• ACS V
• ACS5
• craniofacial-skeletal-dermatologic dysplasia
• Noack syndrome

Diagnosis & Management

Genetic Testing Information

• What is genetic testing?
 /primer/testing/genetictesting
• Genetic Testing Registry: Pfeiffer syndrome

Research Studies from ClinicalTrials.gov

• ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22pfeiffer+syndrome%22+OR+%22craniosynostoses%22+OR+%22acrocephalosyndactylia%22

Other Diagnosis and Management Resources

• GeneReview: FGFR-Related Craniosynostosis Syndromes
 https://www.ncbi.nlm.nih.gov/books/NBK1455
• MedlinePlus Encyclopedia: Craniosynostosis
 https://medlineplus.gov/ency/article/001590.htm
• MedlinePlus Encyclopedia: Webbing of fingers or toes
 https://medlineplus.gov/ency/article/003289.htm
Additional Information & Resources

Health Information from MedlinePlus

• Encyclopedia: Craniosynostosis
 https://medlineplus.gov/ency/article/001590.htm

• Encyclopedia: Webbing of fingers or toes
 https://medlineplus.gov/ency/article/003289.htm

• Health Topic: Craniofacial Abnormalities
 https://medlineplus.gov/craniofacialabnormalities.html

Genetic and Rare Diseases Information Center

• Pfeiffer syndrome
 https://rarediseases.info.nih.gov/diseases/7380/pfeiffer-syndrome

Additional NIH Resources

• National Institute of Neurological Disorders and Stroke: Craniosynostosis
 Information Page
 https://www.ninds.nih.gov/Disorders/All-Disorders/Craniosynostosis-Information-
 Page

Educational Resources

• Boston Children's Hospital
 http://www.childrenshospital.org/conditions-and-treatments/conditions/p/pfeiffer-
 syndrome

• Cincinnati Children's Hospital Medical Center: Craniosynostosis
 https://www.cincinnatichildrens.org/health/c/craniosynostosis

• Collaboration for Craniofacial Development and Disorders, Johns Hopkins
 University
 https://www.hopkinsmedicine.org/neurology_neurosurgery/centers_clinics/
 pediatric_neurosurgery/conditions/craniosynostosis/

• Headlines Craniofacial Support (UK)

• MalaCards: pfeiffer syndrome
 https://www.malacards.org/card/pfeiffer_syrondome

• Orphanet: Pfeiffer syndrome
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=710

• The Craniofacial Center, Dallas, Texas
 http://thecraniofacialcenter.com/pfeiffer.html
Patient Support and Advocacy Resources

- AmeriFace
 http://www.ameriface.org/
- Children's Craniofacial Association
 https://ccakids.org/
- National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/pfeiffer-syndrome/
- Resource List from the University of Kansas Medical Center
 http://www.kumc.edu/gec/support/craniofa.html

Clinical Information from GeneReviews

- FGFR-Related Craniosynostosis Syndromes
 https://www.ncbi.nlm.nih.gov/books/NBK1455

Scientific Articles on PubMed

- PubMed
 %5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last
 +1800+days%22%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- PFEIFFER SYNDROME
 http://omim.org/entry/101600

Sources for This Summary

- Chen L, Deng CX. Roles of FGF signaling in skeletal development and human genetic diseases.
 Front Biosci. 2005 May 1;10:1961-76. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15769677

- Chokdeemboon C, Mahatumarat C, Rojvachiranonda N, Tongkobpetch S, Suphapeetiporn K,
 Shotelersuk V. FGFR1 and FGFR2 mutations in Pfeiffer syndrome. J Craniofac Surg. 2013 Jan;
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23348274

- Cornejo-Roldan LR, Roessler E, Muenke M. Analysis of the mutational spectrum of the FGFR2
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10394936

 doi: 10.1097/SCS.0b013e31826704be.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23348287

- Harb E, Kran B. Pfeiffer syndrome: systemic and ocular implications. Optometry. 2005 Jul;76(7):
 352-62. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16038862
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16740155
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482682/

- Wilkie AO, Patey SJ, Kan SH, van den Ouweland AM, Hamel BC. FGFs, their receptors, and
 112(3):266-78. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12357470

Reprinted from Genetics Home Reference:

Reviewed: January 2017
PUBLISHED: August 6, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services