Peroxisomal acyl-CoA oxidase deficiency

Peroxisomal acyl-CoA oxidase deficiency is a disorder that causes deterioration of nervous system functions (neurodegeneration) beginning in infancy. Newborns with peroxisomal acyl-CoA oxidase deficiency have weak muscle tone (hypotonia) and seizures. They may have unusual facial features, including widely spaced eyes (hypertelorism), a low nasal bridge, and low-set ears. Extra fingers or toes (polydactyly) or an enlarged liver (hepatomegaly) also occur in some affected individuals.

Most babies with peroxisomal acyl-CoA oxidase deficiency learn to walk and begin speaking, but they experience a gradual loss of these skills (developmental regression), usually beginning between the ages of 1 and 3. As the condition gets worse, affected children develop exaggerated reflexes (hyperreflexia), increased muscle tone (hypertonia), more severe and recurrent seizures (epilepsy), and loss of vision and hearing. Most children with peroxisomal acyl-CoA oxidase deficiency do not survive past early childhood.

Frequency

Peroxisomal acyl-CoA oxidase deficiency is a rare disorder. Its prevalence is unknown. Only a few dozen cases have been described in the medical literature.

Genetic Changes

Peroxisomal acyl-CoA oxidase deficiency is caused by mutations in the ACOX1 gene, which provides instructions for making an enzyme called peroxisomal straight-chain acyl-CoA oxidase. This enzyme is found in sac-like cell structures (organelles) called peroxisomes, which contain a variety of enzymes that break down many different substances. The peroxisomal straight-chain acyl-CoA oxidase enzyme plays a role in the breakdown of certain fat molecules called very long-chain fatty acids (VLCFAs). Specifically, it is involved in the first step of a process called the peroxisomal fatty acid beta-oxidation pathway. This process shortens the VLCFA molecules by two carbon atoms at a time until the VLCFAs are converted to a molecule called acetyl-CoA, which is transported out of the peroxisomes for reuse by the cell.

ACOX1 gene mutations prevent the peroxisomal straight-chain acyl-CoA oxidase enzyme from breaking down VLCFAs efficiently. As a result, these fatty acids accumulate in the body. It is unclear exactly how VLCFA accumulation leads to the specific features of peroxisomal acyl-CoA oxidase deficiency. However, researchers suggest that the abnormal fatty acid accumulation triggers inflammation in the nervous system that leads to the breakdown of myelin, which is the covering that protects nerves and promotes the efficient transmission of nerve impulses. Destruction of myelin leads to a loss of myelin-containing tissue (white matter) in the brain and spinal cord;
loss of white matter is described as leukodystrophy. Leukodystrophy is likely involved in
the development of the neurological abnormalities that occur in peroxisomal acyl-CoA
oxidase deficiency.

Inheritance Pattern
This condition is inherited in an autosomal recessive pattern, which means both copies
of the gene in each cell have mutations. The parents of an individual with an autosomal
recessive condition each carry one copy of the mutated gene, but they typically do not
show signs and symptoms of the condition.

Other Names for This Condition
• acyl-coenzyme A oxidase deficiency
• pseudo-NALD
• pseudoadrenoleukodystrophy
• pseudoneonatal adrenoleukodystrophy
• straight-chain acyl-CoA oxidase deficiency

Diagnosis & Management
Genetic Testing
• Genetic Testing Registry: Pseudoneonatal adrenoleukodystrophy

Other Diagnosis and Management Resources
• GeneReview: Leukodystrophy Overview
 https://www.ncbi.nlm.nih.gov/books/NBK184570

General Information from MedlinePlus
• Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
• Drug Therapy
 https://medlineplus.gov/drugtherapy.html
• Genetic Counseling
 https://medlineplus.gov/geneticcounseling.html
• Palliative Care
 https://medlineplus.gov/palliativecare.html
• Surgery and Rehabilitation
 https://medlineplus.gov/surgeryandrehabilitation.html
Additional Information & Resources

MedlinePlus
- Health Topic: Leukodystrophies
 https://medlineplus.gov/leukodystrophies.html

Genetic and Rare Diseases Information Center
- Pseudoneonatal adrenoleukodystrophy
 https://rarediseases.info.nih.gov/diseases/4543/pseudoneonatal-adrenoleukodystrophy

Educational Resources
- DiseaseInfoSearch: Pseudoneonatal adrenoleukodystrophy
 http://www.diseaseinfosearch.org/Pseudoneonatal+adrenoleukodystrophy/6045
- MalaCards: peroxisomal acyl-coa oxidase deficiency
 http://www.malacards.org/card/peroxisomal_acyl_coa_oxidase_deficiency
 https://www.merckmanuals.com/professional/pediatrics/inherited-disorders-of-metabolism/peroxisomal-disorders
- Orphanet: Peroxisomal acyl-CoA oxidase deficiency
 http://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=2971

Patient Support and Advocacy Resources
- Global Foundation for Peroxisomal Disorders
 https://www.thegfpd.org/
- United Leukodystrophy Foundation
 https://ulf.org/

GeneReviews
- Leukodystrophy Overview
 https://www.ncbi.nlm.nih.gov/books/NBK184570

ClinicalTrials.gov
- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22peroxisomal+acyl-CoA+oxidase+deficiency%22+OR+%22pseudoneonatal+adrenoleukodystrophy%22+OR+%22straight-chain+acyl-CoA+oxidase+deficiency%22+OR+%22Peroxisomal+Disorders%22
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28peroxisomal+acyl-coa+oxidase+deficiency%5BTIAB%5D%29+OR+%28pseudoneonatal+adrenoleukodystrophy%5BTIAB%5D%29+OR+%28straight-chain+acyl-coa+oxidase+deficiency%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D

OMIM

- PEROXISOMAL ACYL-CoA OXIDASE DEFICIENCY
 http://omim.org/entry/264470

MedGen

- Pseudoneonatal adrenoleukodystrophy

Sources for This Summary

 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791418/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11500517

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11815777

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28409475

Reviewed: February 2018
Published: May 8, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services