pantothenate kinase-associated neurodegeneration

Pantothenate kinase-associated neurodegeneration (formerly called Hallervorden-Spatz syndrome) is a disorder of the nervous system. This condition is characterized by progressive difficulty with movement, typically beginning in childhood. Movement abnormalities include involuntary muscle spasms, rigidity, and trouble with walking that worsens over time. Many people with this condition also develop problems with speech (dysarthria), and some develop vision loss. Additionally, affected individuals may experience a loss of intellectual function (dementia) and psychiatric symptoms such as behavioral problems, personality changes, and depression.

Pantothenate kinase-associated neurodegeneration is characterized by an abnormal buildup of iron in certain areas of the brain. A particular change called the eye-of-the-tiger sign, which indicates an accumulation of iron, is typically seen on magnetic resonance imaging (MRI) scans of the brain in people with this disorder.

Researchers have described classic and atypical forms of pantothenate kinase-associated neurodegeneration. The classic form usually appears in early childhood, causing severe problems with movement that worsen rapidly. Features of the atypical form appear later in childhood or adolescence and progress more slowly. Signs and symptoms vary, but the atypical form is more likely than the classic form to involve speech defects and psychiatric problems.

A condition called HARP (hypoprebetalipoproteinemia, acanthocytosis, retinitis pigmentosa, and pallidal degeneration), which was historically described as a separate syndrome, is now considered part of pantothenate kinase-associated neurodegeneration. Although HARP is much rarer than classic pantothenate kinase-associated neurodegeneration, both conditions involve problems with movement, dementia, and vision abnormalities.

Frequency

The precise incidence of this condition is unknown. It is estimated to affect 1 to 3 per million people worldwide.

Genetic Changes

Mutations in the PANK2 gene cause pantothenate kinase-associated neurodegeneration.

The PANK2 gene provides instructions for making an enzyme called pantothenate kinase 2. This enzyme is active in mitochondria, the energy-producing centers within cells, where it plays a critical role in the formation of a molecule called coenzyme A.
Found in all living cells, coenzyme A is essential for the body’s production of energy from carbohydrates, fats, and some protein building blocks (amino acids).

Mutations in the \textit{PANK2} gene likely result in the production of an abnormal version of pantothenate kinase 2 or prevent cells from making any of this enzyme. A lack of functional pantothenate kinase 2 disrupts the production of coenzyme A and allows potentially harmful compounds to build up in the brain. This buildup leads to swelling and tissue damage, and allows iron to accumulate abnormally in certain parts of the brain. Researchers have not determined how these changes result in the specific features of pantothenate kinase-associated neurodegeneration. Because pantothenate kinase 2 functions in mitochondria, the signs and symptoms of this condition may be related to impaired energy production.

\section*{Inheritance Pattern}

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

\section*{Other Names for This Condition}

\begin{itemize}
 \item NBIA1
 \item neurodegeneration with brain iron accumulation type 1
 \item PKAN
\end{itemize}

\section*{Diagnosis & Management}

These resources address the diagnosis or management of pantothenate kinase-associated neurodegeneration:

\begin{itemize}
 \item GeneReview: Pantothenate Kinase-Associated Neurodegeneration
 http://www.ncbi.nlm.nih.gov/books/NBK1490
 \item Genetic Testing Registry: Hypoprebetalipoproteinemia, acanthocytosis, retinitis pigmentosa, and pallidal degeneration
 \item MedlinePlus Encyclopedia: Hallervorden-Spatz Disease
 https://medlineplus.gov/ency/article/001225.htm
 \item MedlinePlus Encyclopedia: MRI
 https://medlineplus.gov/ency/article/003335.htm
\end{itemize}
These resources from MedlinePlus offer information about the diagnosis and management of various health conditions:

- **Diagnostic Tests**
 https://medlineplus.gov/diagnostictests.html

- **Drug Therapy**
 https://medlineplus.gov/drugtherapy.html

- **Surgery and Rehabilitation**
 https://medlineplus.gov/surgeryandrehabilitation.html

- **Genetic Counseling**
 https://medlineplus.gov/geneticcounseling.html

- **Palliative Care**
 https://medlineplus.gov/palliativecare.html

Additional Information & Resources

MedlinePlus

- **Encyclopedia: Hallervorden-Spatz Disease**
 https://medlineplus.gov/ency/article/001225.htm

- **Encyclopedia: MRI**
 https://medlineplus.gov/ency/article/003335.htm

- **Health Topic: Degenerative Nerve Diseases**
 https://medlineplus.gov/degenerativenervediseases.html

- **Health Topic: Movement Disorders**
 https://medlineplus.gov/movementdisorders.html

Genetic and Rare Diseases Information Center

- **Pantothenate kinase-associated neurodegeneration**
 http://rarediseases.info.nih.gov/gard/6564/pantothenate-kinase-associated-neurodegeneration/resources/1

Additional NIH Resources

- **National Institute of Neurological Disorders and Stroke**
Educational Resources

- Disease InfoSearch: Pigmentary pallidal degeneration
 http://www.diseaseinfosearch.org/Pigmentary+pallidal+degeneration/9108
- MalaCards: atypical pantothenate kinase-associated neurodegeneration
 http://www.malacards.org/card/atypical_pantothenate_kinase_associated_neurodegeneration_2
- My46 Trait Profile
 https://www.my46.org/trait-document?trait=Pantothenate%20Kinase-Associated%20Neurodegeneration&type=profile
- NBIAcure: PKAN
 http://nbiacure.org/learn/nbia-disorders/pkan/
- Orphanet: Neurodegeneration with brain iron accumulation
 http://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=385

Patient Support and Advocacy Resources

- National Organization for Rare Disorders (NORD)
 http://rarediseases.org/rare-diseases/pantothenate-kinase-associated-neurodegeneration/
- NBIAcure
 http://nbiacure.org/

GeneReviews

- Pantothenate Kinase-Associated Neurodegeneration
 http://www.ncbi.nlm.nih.gov/books/NBK1490

Genetic Testing Registry

- Hypoprebetalipoproteinemina, acanthocytosis, retinitis pigmentosa, and pallidal degeneration
- Neurodegeneration with brain iron accumulation

ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22pantothenate+kinase-associated+neurodegeneration%22+OR+%22Hallervorden-Spatz+Syndrome%22
Scientific articles on PubMed

- PubMed

 [PubMed](http://www.ncbi.nlm.nih.gov/pubmed?term=%28pantothenate+kinase-associated+neurodegeneration%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1080+days%22%5Bdp%5D)

OMIM

- HYPOPREBETALIPOPROTEINEMIA, ACANTHOCYTOSIS, RETINITIS PIGMENTOSA, AND PALLIDAL DEGENERATION

 http://omim.org/entry/607236

- NEURODEGENERATION WITH BRAIN IRON ACCUMULATION 1

 http://omim.org/entry/234200

Sources for This Summary

- GeneReview: Pantothenate Kinase-Associated Neurodegeneration

 [Citation on PubMed](http://www.ncbi.nlm.nih.gov/pubmed/16416393)

- [Free article on PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2117327/)

 [Citation on PubMed](http://www.ncbi.nlm.nih.gov/pubmed/16437574)

 [Citation on PubMed](http://www.ncbi.nlm.nih.gov/pubmed/12510040)

 [Citation on PubMed](http://www.ncbi.nlm.nih.gov/pubmed/12614941)

 [Citation on PubMed](http://www.ncbi.nlm.nih.gov/pubmed/14631201)

 [Citation on PubMed](http://www.ncbi.nlm.nih.gov/pubmed/14638969)

 [Citation on PubMed](http://www.ncbi.nlm.nih.gov/pubmed/15911822)
 Citation on PubMed: http://www.ncbi.nlm.nih.gov/pubmed/12510036

• Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ. A novel pantothenate
 345-9.
 Citation on PubMed: http://www.ncbi.nlm.nih.gov/pubmed/11479594

Reprinted from Genetics Home Reference:

Reviewed: January 2015
Published: September 20, 2016

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services