Otospondylomegaepiphyseal dysplasia

Otospondylomegaepiphyseal dysplasia (OSMED) is a condition characterized by skeletal abnormalities, distinctive facial features, and severe hearing loss. The term "otospondylomegaepiphyseal" refers to the parts of the body that this condition affects: the ears (oto-), the bones of the spine (spondylo-), and the ends (epiphyses) of long bones in the arms and legs. The features of this condition significantly overlap those of two similar conditions, Weissenbacher-Zweymüller syndrome and Stickler syndrome type III. All of these conditions are caused by mutations in the same gene, and in some cases, it can be difficult to tell the conditions apart. Some researchers believe they represent a single disorder with a range of signs and symptoms.

People with OSMED are often shorter than average because the long bones in their legs are unusually short. Other skeletal features include enlarged joints; short arms, hands, and fingers; and flattened bones of the spine (platyspondyly). People with the disorder often experience back and joint pain, limited joint movement, and arthritis that begins early in life.

Severe high-frequency hearing loss is common in people with OSMED. Typical facial features include protruding eyes; a flattened bridge of the nose; an upturned nose with a large, rounded tip; and a small lower jaw. Almost all affected infants are born with an opening in the roof of the mouth (a cleft palate).

Frequency

This condition is rare; its prevalence is unknown. Only a few families with OSMED worldwide have been described in the medical literature.

Causes

OSMED is caused by mutations in the COL11A2 gene. This gene provides instructions for making one component of type XI collagen, which is a complex molecule that gives structure and strength to the connective tissues that support the body’s joints and organs. Type XI collagen is found in cartilage, a tough but flexible tissue that makes up much of the skeleton during early development. Most cartilage is later converted to bone, except for the cartilage that continues to cover and protect the ends of bones and is present in the nose and external ears. Type XI collagen is also part of the inner ear and the nucleus pulposus, which is the center portion of the discs between vertebrae.

The COL11A2 gene mutations that cause OSMED disrupt the production or assembly of type XI collagen molecules. The defective collagen weakens connective tissues in many parts of the body, including the long bones, spine, and inner ears, which impairs bone development and underlies the other signs and symptoms of this condition.
Inheritance Pattern
This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition
- chondrodystrophy with sensorineural deafness
- Insley-Astley syndrome
- mega-epiphyseal dwarfism
- Nance-Insley syndrome
- Nance-Sweeney chondrodysplasia
- OSMED
- oto-spondylo-megaepiphyseal dysplasia

Diagnosis & Management

Genetic Testing Information
- What is genetic testing?
 /primer/testing/genetictesting
- Genetic Testing Registry: Otospondylomegaepiphyseal dysplasia

Additional Information & Resources

Health Information from MedlinePlus
- Health Topic: Bone Diseases
 https://medlineplus.gov/bonediseases.html
- Health Topic: Connective Tissue Disorders
 https://medlineplus.gov/connectivetissuedisorders.html
- Health Topic: Hearing Disorders and Deafness
 https://medlineplus.gov/hearingdisordersanddeafness.html

Genetic and Rare Diseases Information Center
- OSMED Syndrome
Additional NIH Resources

- National Institute of Arthritis and Musculoskeletal and Skin Diseases: Heritable Disorders of Connective Tissue
 https://www.niams.nih.gov/health-topics/heritable-disorders-connective-tissue

Educational Resources

- MalaCards: otospondylomegaepiphyseal dysplasia
 https://www.malacards.org/card/otospondylomegaepiphyseal_dysplasia

- Nemours Children’s Health System: Skeletal Dysplasia
 https://www.nemours.org/services/skeletal-dysplasia.html?tab=about

- Orphanet: Otospondylomegaepiphyseal dysplasia
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=1427

Patient Support and Advocacy Resources

- American Cleft Palate-Craniofacial Association
 https://cleftline.org/

- Human Growth Foundation
 http://hgfound.org/

- International Skeletal Dysplasia Registry, UCLA
 https://www.uclahealth.org/ortho/isdr

- Little People of America
 https://www.lpaonline.org/

- My Baby's Hearing, Boys Town National Research Hospital
 https://www.babyhearing.org/

- National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/osmed-homozygous/

- Resource List from the University of Kansas Medical Center
 http://www.kumc.edu/gec/support/connect.html

Scientific Articles on PubMed

- PubMed
 +dysplasia%5BTIAB%5D%29+OR+%28oto-spondylo-megaepiphyseal+dysplasia
 %5BTIAB%5D%29%29+OR+%28%28OSMED%5BTIAB%5D%29+AND+
 %28collagen*%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human
 %5Bmh%5D

Catalog of Genes and Diseases from OMIM

- OTOSPONDYLOMEGAEPiphyseal Dysplasia, Autosomal Recessive
 http://omim.org/entry/215150
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15558753

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10677296
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1288089/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16637051

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9188673

Reprinted from Genetics Home Reference:

Reviewed: May 2016
Published: February 26, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services