Osteoglyphonic dysplasia

Osteoglyphonic dysplasia is a condition characterized by abnormal bone growth that leads to severe head and face (craniofacial) abnormalities, dwarfism, and other features. The term osteoglyphonic refers to the bones (osteo-) having distinctive hollowed out (-glyphonic) areas that appear as holes on x-ray images.

Premature fusion of certain bones in the skull (craniosynostosis) typically occurs in osteoglyphonic dysplasia. The craniosynostosis associated with this disorder may give the head a tall appearance, often referred to in the medical literature as a tower-shaped skull, or a relatively mild version of a deformity called a cloverleaf skull. Characteristic facial features in people with osteoglyphonic dysplasia include a prominent forehead (frontal bossing), widely spaced eyes (hypertelorism), flattening of the bridge of the nose and of the middle of the face (midface hypoplasia), a large tongue (macroglossia), a protruding jaw (prognathism), and a short neck. People with this condition usually have no visible teeth because the teeth never emerge from the jaw (clinical anodontia). In addition, the gums are often overgrown (hypertrophic gingiva).

Infants with osteoglyphonic dysplasia often experience failure to thrive, which means they do not gain weight and grow at the expected rate. Affected individuals have short, bowed legs and arms and are short in stature. They also have flat feet and short, broad hands and fingers.

The life expectancy of people with osteoglyphonic dysplasia depends on the extent of their craniofacial abnormalities; those that obstruct the air passages and affect the mouth and teeth can lead to respiratory problems and cause difficulty with eating and drinking. Despite the skull abnormalities, intelligence is generally not affected in this disorder.

Frequency

Osteoglyphonic dysplasia is a rare disorder; its prevalence is unknown. Only about 15 cases have been reported in the medical literature.

Causes

Osteoglyphonic dysplasia is caused by mutations in the FGFR1 gene, which provides instructions for making a protein called fibroblast growth factor receptor 1. This protein is one of four fibroblast growth factor receptors, which are related proteins that bind (attach) to other proteins called fibroblast growth factors. The growth factors and their receptors are involved in important processes such as cell division, regulation of cell growth and maturation, formation of blood vessels, wound healing, and embryonic development. In particular, they play a major role in skeletal development.
The FGFR1 protein spans the cell membrane, so that one end of the protein remains inside the cell and the other end projects from the outer surface of the cell. When a fibroblast growth factor binds to the part of the FGFR1 protein outside the cell, the receptor triggers a cascade of chemical reactions inside the cell that instruct the cell to undergo certain changes, such as maturing to take on specialized functions. The FGFR1 protein is thought to play an important role in the development of the nervous system. This protein may also help regulate the growth of long bones, such as the large bones in the arms and legs.

FGFR1 gene mutations that cause osteoglophonic dysplasia change single building blocks (amino acids) in the FGFR1 protein. The altered FGFR1 protein appears to cause prolonged signaling, which promotes premature fusion of bones in the skull and disrupts the regulation of bone growth in the arms and legs.

Inheritance Pattern

This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. Most cases result from new mutations in the gene and occur in people with no history of the disorder in their family. However, some affected individuals inherit the mutation from an affected parent.

Other Names for This Condition
- Fairbank-Keats syndrome
- OGD
- osteoglophonic dwarfism

Diagnosis & Management

Genetic Testing Information
- What is genetic testing? primer/testing/genetictesting
- Genetic Testing Registry: Osteoglophonic dysplasia

Other Diagnosis and Management Resources
- Seattle Children's Hospital: Dwarfism and Bone Dysplasias
 https://www.seattlechildrens.org/conditions/chromosomal-genetic-conditions/dwarfism
Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Craniosynostosis
 https://medlineplus.gov/ency/article/001590.htm
- Health Topic: Craniofacial Abnormalities
 https://medlineplus.gov/craniofacialabnormalities.html
- Health Topic: Dwarfism
 https://medlineplus.gov/dwarfism.html

Genetic and Rare Diseases Information Center

- Osteoglophonic dysplasia
 https://rarediseases.info.nih.gov/diseases/4142/osteoglophonic-dysplasia

Educational Resources

- KidsHealth: Dwarfism
- MalaCards: osteoglophonic dysplasia
 https://www.malacards.org/card/osteoglophonic_dysplasia
- Orphanet: Osteoglophonic dysplasia
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=2645

Patient Support and Advocacy Resources

- AboutFace
 https://www.aboutface.ca/
- Human Growth Foundation
 http://hgfound.org/
- International Skeletal Dysplasia Registry, UCLA
 https://www.uclahealth.org/ortho/isdr
- Little People of America
 https://www.lpaonline.org/
- Little People UK
 http://littlepeopleuk.org/
- The MAGIC Foundation
 https://www.magicfoundation.org/
- University of Kansas Genetics Education Center
 http://www.kumc.edu/gec/support/dwarfism.html
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28osteoglophonic+dysplasia%5BTIAB%5D%29+OR+%28osteoglophonic+dwarfism%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D

Catalog of Genes and Diseases from OMIM

- OSTEOGLOPHONIC DYSPLASIA
 http://omim.org/entry/166250

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16470795

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20339250

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8958322

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20236123
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4201914/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15625620
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1196382/

Reprinted from Genetics Home Reference:

Reviewed: July 2013
Published: October 9, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services