Multiple sulfatase deficiency

Multiple sulfatase deficiency is a condition that mainly affects the brain, skin, and skeleton. Because the signs and symptoms of multiple sulfatase deficiency vary widely, researchers have split the condition into three types: neonatal, late-infantile, and juvenile.

The neonatal type is the most severe form, with signs and symptoms appearing soon after birth. Affected individuals have deterioration of tissue in the nervous system (leukodystrophy), which can contribute to movement problems, seizures, developmental delay, and slow growth. They also have dry, scaly skin (ichthyosis) and excess hair growth (hypertrichosis). Skeletal abnormalities can include abnormal side-to-side curvature of the spine (scoliosis), joint stiffness, and dysostosis multiplex, which refers to a specific pattern of skeletal abnormalities seen on x-ray. Individuals with the neonatal type typically have facial features that can be described as "coarse." Affected individuals may also have hearing loss, heart malformations, and an enlarged liver and spleen (hepatosplenomegaly). Many of the signs and symptoms of neonatal multiple sulfatase deficiency worsen over time.

The late-infantile type is the most common form of multiple sulfatase deficiency. It is characterized by normal cognitive development in early childhood followed by a progressive loss of mental abilities and movement (psychomotor regression) due to leukodystrophy or other brain abnormalities. Individuals with this form of the condition do not have as many features as those with the neonatal type, but they often have ichthyosis, skeletal abnormalities, and coarse facial features.

The juvenile type is the rarest form of multiple sulfatase deficiency. Signs and symptoms of the juvenile type appear in mid- to late childhood. Affected individuals have normal early cognitive development but then experience psychomotor regression; however, the regression in the juvenile type usually occurs at a slower rate than in the late-infantile type. Ichthyosis is also common in the juvenile type of multiple sulfatase deficiency.

Life expectancy is shortened in individuals with all types of multiple sulfatase deficiency. Typically, affected individuals survive only a few years after the signs and symptoms of the condition appear, but life expectancy varies depending on the severity of the condition and how quickly the neurological problems worsen.

Frequency

Multiple sulfatase deficiency is estimated to occur in 1 per million individuals worldwide. Approximately 50 cases have been reported in the scientific literature.
Genetic Changes

Multiple sulfatase deficiency is caused by mutations in the \textit{SUMF1} gene. This gene provides instructions for making an enzyme called formylglycine-generating enzyme (FGE). This enzyme is found in a cell structure called the endoplasmic reticulum, which is involved in protein processing and transport. The FGE enzyme modifies other enzymes called sulfatases, which aid in breaking down substances that contain chemical groups known as sulfates. These substances include a variety of sugars, fats, and hormones.

Most \textit{SUMF1} gene mutations severely reduce the function of the FGE enzyme or lead to the production of an unstable enzyme that is quickly broken down. The activity of multiple sulfatases is impaired because the FGE enzyme modifies all known sulfatase enzymes. Sulfate-containing molecules that are not broken down build up in cells, often resulting in cell death. The death of cells in particular tissues, specifically the brain, skeleton, and skin, cause many of the signs and symptoms of multiple sulfatase deficiency.

Research indicates that mutations that lead to reduced FGE enzyme function are associated with the less severe cases of the condition, whereas mutations that lead to the production of an unstable FGE enzyme tend to be associated with the more severe cases of multiple sulfatase deficiency.

Inheritance Pattern

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

- Austin syndrome
- juvenile sulfatidosis, Austin type
- MSD
- mucosulfatidosis

Diagnosis & Management

Genetic Testing

- Genetic Testing Registry: Multiple sulfatase deficiency
General Information from MedlinePlus

- Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
- Drug Therapy
 https://medlineplus.gov/drugtherapy.html
- Genetic Counseling
 https://medlineplus.gov/geneticcounseling.html
- Palliative Care
 https://medlineplus.gov/palliativecare.html
- Surgery and Rehabilitation
 https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources

MedlinePlus

- Encyclopedia: Ichthyosis Vulgaris
 https://medlineplus.gov/ency/article/001451.htm
- Health Topic: Genetic Brain Disorders
 https://medlineplus.gov/geneticbraindisorders.html
- Health Topic: Metabolic Disorders
 https://medlineplus.gov/metabolicdisorders.html
- Health Topic: Scoliosis
 https://medlineplus.gov/scoliosis.html

Genetic and Rare Diseases Information Center

- Multiple sulfatase deficiency
 https://rarediseases.info.nih.gov/diseases/5061/multiple-sulfatase-deficiency

Educational Resources

- Ann & Robert H. Lurie Children's Hospital of Chicago: Scoliosis
 https://www.luriechildrens.org/en/specialties-conditions/scoliosis/
- Kennedy Krieger Institute: Leukodystrophy
 https://www.kennedykrieger.org/patient-care/diagnoses-disorders/leukodystrophy
- MalaCards: multiple sulfatase deficiency
 http://www.malacards.org/card/multiple_sulfatase_deficiency
 https://www.merckmanuals.com/professional/dermatologic-disorders/cornification-disorders/ichthyosis
• Orphanet: Multiple sulfatase deficiency
 http://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=585

• The MPS Society (UK): Guide to Understanding Multiple Sulfatase Deficiency

Patient Support and Advocacy Resources

• American Association on Intellectual and Developmental Disabilities (AAIDD)
 http://aaidd.org/

• Foundation for Ichthyosis & Related Skin Types (FIRST)
 http://www.firstskinfoundation.org/

• Lysosomal Diseases New Zealand

• MSD Action Foundation (Ireland)
 http://www.savingdylan.com/

• The Arc: For People with Intellectual and Developmental Disabilities
 https://www.thearc.org/

• The MPS Society (UK)
 http://www.mpssociety.org.uk/diseases/related-diseases/multiple-sulphatase-deficiency/

• United Leukodystrophy Foundation
 https://ulf.org/

• United MSD Foundation
 http://curemsd.org/

ClinicalTrials.gov

• ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22multiple+sulfatase+deficiency%22+OR+%22Sulfatidosis%22

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28multiple+sulfatase+deficiency%5BTI%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D

OMIM

• MULTIPLE SULFATASE DEFICIENCY
 http://omim.org/entry/272200
Sources for This Summary

- Annunziata I, Bouchè V, Lombardi A, Settembre C, Ballabio A. Multiple sulfatase deficiency is due to hypomorphic mutations of the SUMF1 gene. Hum Mutat. 2007 Sep;28(9):928.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17657823

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11737681

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15146462

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12757705

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16125993

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24339620
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841641/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21224894
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3062010/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23321616
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746267/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18157819

Reprinted from Genetics Home Reference: