Miyoshi myopathy

Miyoshi myopathy is a muscle disorder that begins with weakness in the muscles that are located away from the center of the body (distal muscles), such as those in the legs. During early to mid-adulthood, affected individuals typically begin to experience muscle weakness and wasting (atrophy) in one or both calves. If only one leg is affected, the calves appear different in size (asymmetrical). Calf weakness can make it difficult to stand on tip toe.

As Miyoshi myopathy slowly worsens, the muscle weakness and atrophy spread up the leg to the muscles in the thigh and buttock and can also involve the upper arm and shoulder muscles. Eventually, affected individuals may have difficulty climbing stairs or walking for an extended period of time. Some people with Miyoshi myopathy may eventually need wheelchair assistance.

Rarely, abnormal heart rhythms (arrhythmias) have developed in people with Miyoshi myopathy. Individuals with Miyoshi myopathy have highly elevated levels of an enzyme called creatine kinase (CK) in their blood, which often indicates muscle disease.

Frequency

The exact prevalence of Miyoshi myopathy is unknown. In Japan, where the condition was first described, it is estimated to affect 1 in 440,000 individuals.

Genetic Changes

Miyoshi myopathy is caused by mutations in the DYSF or ANO5 gene. When Miyoshi myopathy is caused by ANO5 gene mutations it is sometimes referred to as distal anoctaminopathy; when this condition is caused by DYSF gene mutations it is known as a dysferlinopathy. The DYSF and ANO5 genes provide instructions for making proteins primarily found in muscles that are used for movement (skeletal muscles). The protein produced from the DYSF gene, called dysferlin, is found in the thin membrane called the sarcolemma that surrounds muscle fibers. Dysferlin is thought to aid in repairing the sarcolemma when it becomes damaged or torn due to muscle strain.

The ANO5 gene provides instructions for making a protein called anoctamin-5. This protein is located within the membrane of a cell structure called the endoplasmic reticulum, which is involved in protein production, processing, and transport. Anoctamin-5 is thought to act as a channel, allowing charged chlorine atoms (chloride ions) to flow in and out of the endoplasmic reticulum. The regulation of chloride flow within muscle cells plays a role in controlling muscle tensing (contraction) and relaxation.
DYSF or ANO5 gene mutations often result in a decrease or elimination of the corresponding protein. A lack of dysferlin leads to a reduced ability to repair damage done to the sarcolemma of muscle fibers. As a result, damage accumulates and leads to atrophy of the muscle fiber. It is unclear why this damage leads to the specific pattern of weakness and atrophy that is characteristic of Miyoshi myopathy. The effects of the loss of anoctamin-5 are also unclear. While chloride is necessary for normal muscle function, it is unknown how a lack of this chloride channel causes the signs and symptoms of Miyoshi myopathy.

Inheritance Pattern
This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

This condition occurs with equal frequency in males and females.

Other Names for This Condition
• distal muscular dystrophy, Miyoshi type
• Miyoshi distal myopathy
• Miyoshi muscular dystrophy
• MMD

Diagnosis & Management
Genetic Testing
• Genetic Testing Registry: Miyoshi muscular dystrophy 1
• Genetic Testing Registry: Miyoshi muscular dystrophy 3

Other Diagnosis and Management Resources
• GeneReview: ANO5-Related Muscle Diseases
 https://www.ncbi.nlm.nih.gov/books/NBK114459
• GeneReview: Dysferlinopathy
 https://www.ncbi.nlm.nih.gov/books/NBK1303
• Jain Foundation: Learning Center
 http://www.jain-foundation.org/patient-physician-resources/learning-center
• Jain Foundation: Patient Registration
 http://www.jain-foundation.org/patient-physician-resources/patient-registration
General Information from MedlinePlus

- Diagnostic Tests
 https://medlineplus.gov/diagnostictests.html
- Drug Therapy
 https://medlineplus.gov/drugtherapy.html
- Genetic Counseling
 https://medlineplus.gov/geneticcounseling.html
- Palliative Care
 https://medlineplus.gov/palliativecare.html
- Surgery and Rehabilitation
 https://medlineplus.gov/surgeryandrehabilitation.html

Additional Information & Resources

MedlinePlus

- Encyclopedia: Muscle Atrophy
 https://medlineplus.gov/ency/article/003188.htm
- Health Topic: Muscle Disorders
 https://medlineplus.gov/muscledisorders.html

Genetic and Rare Diseases Information Center

- Miyoshi myopathy
 https://rarediseases.info.nih.gov/diseases/9676/miyoshi-myopathy

Additional NIH Resources

- National Institute of Neurological Disorders and Stroke: Myopathy Information Page
 https://www.ninds.nih.gov/Disorders/All-Disorders/Myopathy-Information-Page

Educational Resources

- Centers for Disease Control and Prevention: Muscular Dystrophy
 https://www.cdc.gov/ncbddd/musculardystrophy/
- Cincinnati Children’s Hospital: Molkentin Lab: Mechanisms of Duchenne and Miyoshi Myopathy
 https://www.cincinnatichildrens.org/research/divisions/m/mcb/labs/molkentin/myopathy
- Disease InfoSearch: Miyoshi myopathy
 http://www.diseaseinfosearch.org/Miyoshi+myopathy/4842
- Jain Foundation: FAQ: LGMD2B/Miyoshi/Dysferlinopathy
MalaCards: miyoshi muscular dystrophy 1
http://www.malacards.org/card/miyoshi_muscular_dystrophy_1

Orphanet: Miyoshi myopathy
https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=45448

Washington University, St. Louis: Neuromuscular Disease Center
https://neuromuscular.wustl.edu/musdist/distal.html#miyoshi

Patient Support and Advocacy Resources

American Heart Association: What is Arrhythmia?
http://www.heart.org/HEARTORG/Conditions/Arrhythmia/Arrhythmia_UCM_002013_SubHomePage.jsp

Muscular Dystrophy Association: Types of Distal MD
https://www.mda.org/disease/distal-myopathies/types

Muscular Dystrophy Canada
http://muscle.ca/

Muscular Dystrophy UK
https://www.musculardystrophyuk.org/

Resource List from the University of Kansas Medical Center: Muscular Dystrophy/Atrophy
http://www.kumc.edu/gec/support/muscular.html

GeneReviews

ANO5-Related Muscle Diseases
https://www.ncbi.nlm.nih.gov/books/NBK114459

Dysferlinopathy
https://www.ncbi.nlm.nih.gov/books/NBK1303

ClinicalTrials.gov

ClinicalTrials.gov
https://clinicaltrials.gov/ct2/results?cond=%22Miyoshi+myopathy%22+OR+%22Miyoshi+muscular+dystrophy%22+OR+%22anoctaminopathy%22+OR+%22dysferlinopathy%22

Scientific Articles on PubMed

PubMed
https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28miyoshi+myopathy%5BTIA+B%5D%29+OR+%28miyoshi+type+distal+muscular+dystrophy%5BTIA+B%5D%29+OR+%28miyoshi+distal+myopathy%5BTIA+B%5D%29+OR+%28miyoshi+muscular+dystrophy%5BTIA+B%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22+AND+5D
OMIM
• MIYOSHI MUSCULAR DYSTROPHY 1
 http://omim.org/entry/254130
• MIYOSHI MUSCULAR DYSTROPHY 3
 http://omim.org/entry/613319

Sources for This Summary
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16891820
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729898/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23663589
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23530687
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16010686
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23519732
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/22402862
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12796534
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23670307