Mitochondrial neurogastrointestinal encephalopathy disease

Mitochondrial neurogastrointestinal encephalopathy (MNGIE) disease is a condition that affects several parts of the body, particularly the digestive system and nervous system. The major features of MNGIE disease can appear anytime from infancy to adulthood, but signs and symptoms most often begin by age 20. The medical problems associated with this disorder worsen with time.

Abnormalities of the digestive system are among the most common and severe features of MNGIE disease. Almost all affected people have a condition known as gastrointestinal dysmotility, in which the muscles and nerves of the digestive system do not move food through the digestive tract efficiently. The resulting digestive problems include feelings of fullness (satiety) after eating only a small amount, trouble swallowing (dysphagia), nausea and vomiting after eating, episodes of abdominal pain, diarrhea, and intestinal blockage. These gastrointestinal problems lead to extreme weight loss and reduced muscle mass (cachexia).

MNGIE disease is also characterized by abnormalities of the nervous system, although these tend to be milder than the gastrointestinal problems. Affected individuals experience tingling, numbness, and weakness in their limbs (peripheral neuropathy), particularly in the hands and feet. Additional neurological signs and symptoms can include droopy eyelids (ptosis), weakness of the muscles that control eye movement (ophthalmoplegia), and hearing loss. Leukoencephalopathy, which is the deterioration of a type of brain tissue known as white matter, is a hallmark of MNGIE disease. These changes in the brain can be seen with magnetic resonance imaging (MRI), though they usually do not cause symptoms in people with this disorder.

Frequency

The prevalence of MNGIE disease is unknown. About 70 people with this disorder have been reported.

Causes

Mutations in the TYMP gene (previously known as ECGF1) cause MNGIE disease. This gene provides instructions for making an enzyme called thymidine phosphorylase. Thymidine is a molecule known as a nucleoside, which (after a chemical modification) is used as a building block of DNA. Thymidine phosphorylase breaks down thymidine into smaller molecules, which helps regulate the level of nucleosides in cells.

TYMP mutations greatly reduce or eliminate the activity of thymidine phosphorylase. A shortage of this enzyme allows thymidine to build up to very high levels in the body. Researchers believe that an excess of this molecule is damaging to a particular kind of DNA known as mitochondrial DNA or mtDNA. Mitochondria are structures within cells
that convert the energy from food into a form that cells can use. Although most DNA is
packaged in chromosomes within the nucleus, mitochondria also have a small amount
of their own DNA.

Mitochondria use nucleosides, including thymidine, to build new molecules of mtDNA
as needed. A loss of thymidine phosphorylase activity and the resulting buildup of
thymidine disrupt the usual maintenance and repair of mtDNA. As a result, mutations
can accumulate in mtDNA, causing it to become unstable. Additionally, mitochondria
may have less mtDNA than usual (mtDNA depletion). These genetic changes impair the
normal function of mitochondria. Although mtDNA abnormalities underlie the digestive
and neurological problems characteristic of MNGIE disease, it is unclear how defective
mitochondria cause the specific features of the disorder.

Inheritance Pattern

This condition is inherited in an autosomal recessive pattern, which means both copies
of the TYMP gene in each cell have mutations. The parents of an individual with an
autosomal recessive condition each carry one copy of the mutated gene, but they
typically do not show signs and symptoms of the condition.

Other Names for This Condition

- MEPOP
- Mitochondrial myopathy with sensorimotor polyneuropathy, ophthalmoplegia, and
 pseudo-obstruction
- Mitochondrial neurogastrointestinal encephalopathy syndrome
- MNGIE disease
- MNGIE syndrome
- Myoneurogastrointestinal encephalopathy syndrome
- Oculogastrointestinal muscular dystrophy
- OGIMD
- POLIP
- Polyneuropathy, ophthalmoplegia, leukoencephalopathy, and intestinal pseudo-
 obstruction
- Thymidine phosphorylase deficiency
Diagnosis & Management

Genetic Testing Information

- What is genetic testing?
 /primer/testing/genetictesting
- Genetic Testing Registry

Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22Mitochondrial+Diseases%22+OR+%22mitochondrial+neurogastrointestinal+encephalopathy+disease%22

Other Diagnosis and Management Resources

- GeneReview: Mitochondrial Neurogastrointestinal Encephalopathy Disease
 https://www.ncbi.nlm.nih.gov/books/NBK1179
- MedlinePlus Encyclopedia: Leukoencephalopathy (image)
 https://medlineplus.gov/ency/imagepages/18144.htm

Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Leukoencephalopathy (image)
 https://medlineplus.gov/ency/imagepages/18144.htm
- Health Topic: Digestive Diseases
 https://medlineplus.gov/digestivediseases.html
- Health Topic: Genetic Brain Disorders
 https://medlineplus.gov/geneticbraindisorders.html
- Health Topic: Mitochondrial Diseases
 https://medlineplus.gov/mitochondrialdiseases.html

Genetic and Rare Diseases Information Center

- Mitochondrial neurogastrointestinal encephalopathy syndrome

Educational Resources

- International Foundation for Functional Gastrointestinal Disorders: About GI Motility
- MalaCards: mitochondrial neurogastrointestinal encephalopathy disease
 https://www.malacards.org/card/mitochondrial_neurogastrointestinal_encephalopathy_disease
• Neuromuscular Disease Center, Washington University
 https://neuromuscular.wustl.edu/mitosyn.html#mngie
• Orphanet: Mitochondrial neurogastrointestinal encephalomyopathy
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=298

Patient Support and Advocacy Resources
• Children's Mitochondrial Disease Network (UK)
 http://www.cmdn.org.uk/
• Muscular Dystrophy Association: Facts About Mitochondrial Myopathies
• Resource list from the University of Kansas Medical Center
 http://www.kumc.edu/gec/support/mitochon.html
• United Mitochondrial Disease Foundation
 https://www.umdf.org/

Clinical Information from GeneReviews
• Mitochondrial Neurogastrointestinal Encephalopathy Disease
 https://www.ncbi.nlm.nih.gov/books/NBK1179

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28mngie%5BTIAB%5D
 %29+OR+%28thymidine+phosphorylase+deficiency%5BTIAB%5D%29+OR
 +%28mitochondrial+neurogastrointestinal+encephalopathy%5BTIAB%5D
 %29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last
 +3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM
• MITOCHONDRIAL DNA DEPLETION SYNDROME 1 (MNGIE TYPE)
 http://omim.org/entry/603041

Sources for This Summary
• Hirano M, Martí R, Spinazzola A, Nishino I, Nishigaki Y. Thymidine phosphorylase deficiency
causes MNGIE: an autosomal recessive mitochondrial disorder. Nucleosides Nucleotides Nucleic
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15571233
I, Bertorini TE, et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): clinical,
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/8164833
Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301358

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17549623

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16120316

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11166160

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10852545

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12352533

Reprinted from Genetics Home Reference:

Reviewed: June 2008
Published: January 22, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services