Microvillus inclusion disease

Microvillus inclusion disease is a condition characterized by chronic, watery, life-threatening diarrhea typically beginning in the first hours to days of life. Rarely, the diarrhea starts around age 3 or 4 months. Food intake increases the frequency of diarrhea.

Microvillus inclusion disease prevents the absorption of nutrients from food during digestion, resulting in malnutrition and dehydration. Affected infants often have difficulty gaining weight and growing at the expected rate (failure to thrive), developmental delay, liver and kidney problems, and thinning of the bones (osteoporosis). Some affected individuals develop cholestasis, which is a reduced ability to produce and release a digestive fluid called bile. Cholestasis leads to irreversible liver disease (cirrhosis).

In individuals with microvillus inclusion disease, lifelong nutritional support is needed and given through intravenous feedings (parenteral nutrition). Even with nutritional supplementation, most children with microvillus inclusion disease do not survive beyond childhood.

A variant of microvillus inclusion disease with milder diarrhea often does not require full-time parenteral nutrition. Individuals with the variant type frequently live past childhood.

Frequency

The prevalence of microvillus inclusion disease is unknown. At least 200 cases have been reported in Europe, although this condition occurs worldwide.

Causes

Mutations in the MYO5B gene cause microvillus inclusion disease. The MYO5B gene provides instructions for making a protein called myosin Vb. This protein helps to determine the position of various components within cells (cell polarity). Myosin Vb also plays a role in moving components from the cell membrane to the interior of the cell for recycling.

MYO5B gene mutations that cause microvillus inclusion disease result in a decrease or absence of myosin Vb function. In cells that line the small intestine (enterocytes), a lack of myosin Vb function changes the cell polarity. As a result, enterocytes cannot properly form structures called microvilli, which normally project like small fingers from the surface of the cells and absorb nutrients and fluids from food as it passes through the intestine. Inside affected enterocytes, small clumps of abnormal microvilli mix with misplaced digestive proteins to form microvillus inclusions, which contribute to the dysfunction of enterocytes. Disorganized enterocytes with poorly formed microvilli reduce the intestine's ability to take in nutrients. The inability to absorb nutrients and
fluids during digestion leads to recurrent diarrhea, malnutrition, and dehydration in individuals with microvillus inclusion disease.

Some people with the signs and symptoms of microvillus inclusion disease do not have mutations in the \textit{MYO5B} gene. These cases may be variants of microvillus inclusion disease. Studies suggest that mutations in other genes can cause these cases, but the causes are usually unknown.

\textbf{Inheritance Pattern}

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

\textbf{Other Names for This Condition}

\begin{itemize}
 \item congenital enteropathy
 \item congenital familial protracted diarrhea with enterocyte brush-border abnormalities
 \item congenital microvillous atrophy
 \item Davidson disease
 \item familial protracted enteropathy
 \item intractable diarrhea of infancy
 \item microvillous atrophy
 \item microvillous inclusion disease
 \item microvillous atrophy with diarrhea 2
 \item MVID
\end{itemize}

\textbf{Diagnosis & Management}

\textbf{Genetic Testing Information}

\begin{itemize}
 \item What is genetic testing? \hspace{1cm} \texttt{primer/testing/genetictesting}
 \item Genetic Testing Registry: Congenital microvillous atrophy \hspace{1cm} https://www.ncbi.nlm.nih.gov/gtr/conditions/C0341306/
\end{itemize}
Research Studies from ClinicalTrials.gov

- ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22microvillus+inclusion+disease%22+OR+%22congenital+enteropathy%22+OR+%22congenital+familial+protracted+diarrhea+with+enterocyte+brush-border+abnormalities%22+OR+%22congenital+microvillous+atrophy%22+OR+%22intractable+diarrhea+of+infancy%22+OR+%22microvillus+atrophy%22+OR+%22microvillous+inclusion+disease%22

Other Diagnosis and Management Resources

- Children's Hospital of Pittsburgh
- Great Ormond Street Hospital for Children (UK): Intestinal Assessment
 https://www.gosh.nhs.uk/medical-information-0/procedures-and-treatments/intestinal-assessment
- International Microvillus Inclusion Disease Patient Registry
 http://www.mvid-central.org/molgenis.do?__target=main&select=Home

Additional Information & Resources

Health Information from MedlinePlus

- Health Topic: Diarrhea
 https://medlineplus.gov/diarrhea.html
- Health Topic: Digestive Diseases
 https://medlineplus.gov/digestivediseases.html
- Health Topic: Malabsorption Syndromes
 https://medlineplus.gov/malabsorptionsyndromes.html

Genetic and Rare Diseases Information Center

- Microvillus inclusion disease
 https://rarediseases.info.nih.gov/diseases/7039/microvillus-inclusion-disease

Additional NIH Resources

- National Digestive Diseases Information Clearinghouse: Diarrhea
 https://www.niddk.nih.gov/health-information/digestive-diseases/diarrhea
Educational Resources

• American Society for Parenteral and Enteral Nutrition: Parenteral Nutrition Safety Toolkit
 http://www.nutritioncare.org/Guidelines_and_Clinical_Resources/Toolkits/Parenteral_Nutrition_Safety_Toolkit/

• Cincinnati Children’s Hospital: Congenital Diarrheal Disorders
 https://www.cincinnatichildrens.org/health/c/congenital-diarrheal-disorders

• KidsHealth from Nemours: Diarrhea

• Merck Manual Consumer Version: Diarrhea in Children

• Merck Manual Consumer Version: Overview of Malabsorption
 https://www.merckmanuals.com/home/digestive-disorders/malabsorption/overview-of-malabsorption

• Merck Manual Professional Version: Total Parenteral Nutrition
 https://www.merckmanuals.com/professional/nutritional-disorders/nutritional-support/total-parenteral-nutrition-tpn

• Orphanet: Microvillus inclusion disease
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=2290

Patient Support and Advocacy Resources

• Guts UK
 https://gutscharity.org.uk/

• National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/microvillus-inclusion-disease/

• Resource List from the University of Kansas Medical Center: Gasteroenterology Conditions
 http://www.kumc.edu/gec/support/gastroen.html

• Short Bowel Syndrome Foundation
 https://shortbowelfoundation.org/

• The Compassionate Friends
 https://www.compassionatefriends.org/
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=(%28%28microvillus+inclusion+disease%5BTIAB%5D%29+OR+%28mvid%5BTIAB%5D%29+OR+%28congenital+microvillous+atrophy%5BTIAB%5D%29+OR+%28microvillous+atrophy%5BTIAB%5D%29+OR+%28microvillous+inclusion+disease%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- DIARRHEA 2, WITH MICROVILLUS ATROPHY
 http://omim.org/entry/251850

Medical Genetics Database from MedGen

- Congenital microvillous atrophy

Sources for This Summary

Reprinted from Genetics Home Reference:

Reviewed: July 2014
Published: September 11, 2018

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services