Methylmalonic acidemia

Methylmalonic acidemia is an inherited disorder in which the body is unable to process certain proteins and fats (lipids) properly. The effects of methylmalonic acidemia, which usually appear in early infancy, vary from mild to life-threatening. Affected infants can experience vomiting, dehydration, weak muscle tone (hypotonia), developmental delay, excessive tiredness (lethargy), an enlarged liver (hepatomegaly), and failure to gain weight and grow at the expected rate (failure to thrive). Long-term complications can include feeding problems, intellectual disability, chronic kidney disease, and inflammation of the pancreas (pancreatitis). Without treatment, this disorder can lead to coma and death in some cases.

Frequency

This condition occurs in an estimated 1 in 50,000 to 100,000 people.

Causes

Mutations in the MMUT, MMAA, MMAB, MMADHC, and MCEE genes cause methylmalonic acidemia. The long term effects of methylmalonic acidemia depend on which gene is mutated and the severity of the mutation.

About 60 percent of methylmalonic acidemia cases are caused by mutations in the MMUT gene. This gene provides instructions for making an enzyme called methylmalonyl CoA mutase. This enzyme works with vitamin B12 (also called cobalamin) to break down several protein building blocks (amino acids), certain lipids, and cholesterol. Mutations in the MMUT gene alter the enzyme’s structure or reduce the amount of the enzyme, which prevents these molecules from being broken down properly. As a result, a substance called methylmalonyl CoA and other potentially toxic compounds can accumulate in the body’s organs and tissues, causing the signs and symptoms of methylmalonic acidemia.

Mutations in the MMUT gene that prevent the production of any functional enzyme result in a form of the condition designated mut^0_. Mut^0_ is the most severe form of methylmalonic acidemia and has the poorest outcome. Mutations that change the structure of methylmalonyl CoA mutase but do not eliminate its activity cause a form of the condition designated mut^-. The mut^- form is typically less severe, with more variable symptoms than the mut^0_ form.

Some cases of methylmalonic acidemia are caused by mutations in the MMAA, MMAB, or MMADHC gene. Proteins produced from the MMAA, MMAB, and MMADHC genes are needed for the proper function of methylmalonyl CoA mutase. Mutations that affect
proteins produced from these three genes can impair the activity of methylmalonyl CoA mutase, leading to methylmalonic acidemia.

A few other cases of methylmalonic acidemia are caused by mutations in the *MCEE* gene. This gene provides instructions for producing an enzyme called methylmalonyl CoA epimerase. Like methylmalonyl CoA mutase, this enzyme also plays a role in the breakdown of amino acids, certain lipids, and cholesterol. Disruption in the function of methylmalonyl CoA epimerase leads to a mild form of methylmalonic acidemia.

It is likely that mutations in other, unidentified genes also cause methylmalonic acidemia.

Inheritance Pattern

This condition is inherited in an autosomal recessive pattern, which means both copies of the *MMUT*, *MMAA*, *MMAB*, *MMADHC*, or *MCEE* gene in each cell have mutations. Most often, the parents of an individual with an autosomal recessive condition are carriers of one copy of the mutated gene but do not show signs and symptoms of the condition.

Other Names for This Condition

- isolated methylmalonic acidemia
- methylmalonic aciduria
- MMA

Diagnosis & Management

Formal Diagnostic Criteria

- ACT Sheet: Elevated C3 acylcarnitine
 https://www.ncbi.nlm.nih.gov/books/NBK55827/bin/C3.pdf

Genetic Testing Information

- What is genetic testing?
- Genetic Testing Registry: Methylmalonic acidemia
- Genetic Testing Registry: Methylmalonic aciduria cblA type
- Genetic Testing Registry: Methylmalonic aciduria cblB type
• Genetic Testing Registry: Methylmalonic aciduria due to methylmalonyl-CoA mutase deficiency

• Genetic Testing Registry: Methylmalonyl-CoA epimerase deficiency

Research Studies from ClinicalTrials.gov
• ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22methylmalonic+acidemia%22

Other Diagnosis and Management Resources
• Baby’s First Test: Methylmalonic Acidemia (Cobalamin Disorders)
 https://www.babysfirsttest.org/newborn-screening/conditions/methylmalonic-acidemia-cobalamin-disorders

• Baby’s First Test: Methylmalonic Acidemia (Methymalonyl-CoA Mutase Deficiency)
 https://www.babysfirsttest.org/newborn-screening/conditions/methylmalonic-acidemia-methymalonyl-coa-mutase-deficiency

• GeneReview: Isolated Methylmalonic Acidemia
 https://www.ncbi.nlm.nih.gov/books/NBK1231

• MedlinePlus Encyclopedia: Methylmalonic acid
 https://medlineplus.gov/ency/article/003565.htm

• MedlinePlus Encyclopedia: Methylmalonic acidemia
 https://medlineplus.gov/ency/article/001162.htm

Additional Information & Resources

Health Information from MedlinePlus
• Encyclopedia: Methylmalonic acid
 https://medlineplus.gov/ency/article/003565.htm

• Encyclopedia: Methylmalonic acidemia
 https://medlineplus.gov/ency/article/001162.htm

• Health Topic: Amino Acid Metabolism Disorders
 https://medlineplus.gov/aminoadcmetabolismdisorders.html

• Health Topic: Lipid Metabolism Disorders
 https://medlineplus.gov/lipidmetabolismdisorders.html

• Health Topic: Newborn Screening
 https://medlineplus.gov/newbornscreening.html
Genetic and Rare Diseases Information Center
• Methylmalonic acidemia
 https://rarediseases.info.nih.gov/diseases/7033/methylmalonic-acidemia

Additional NIH Resources
• National Human Genome Research Institute
 https://www.genome.gov/Genetic-Disorders/MMA-Study-General-Information

Educational Resources
• MalaCards: isolated methylmalonic acidemia
 https://www.malacards.org/card/isolated_methylmalonic_acidemia
• Orphanet: Methylmalonic acidemia without homocystinuria
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=293355
• Screening, Technology, and Research in Genetics
 http://www.newbornscreening.info/Parents/organicaciddisorders/MMA.html
• Virginia Department of Health: Methylmalonic Aciduria (cblA and cblB)
• Virginia Department of Health: Methylmalonic Aciduria (MUT)

Patient Support and Advocacy Resources
• Medical Home Portal
 https://www.medicalhomeportal.org/newborn/methylmalonic-acidemias
• Metabolic Support UK
 https://www.metabolicsupportuk.org/
• National Organization for Rare Disorders (NORD)
 https://rarediseases.org/rare-diseases/acidemia-methylmalonic/
• Organic Acidemia Association
 https://www.oaanews.org/mma.html

Clinical Information from GeneReviews
• Isolated Methylmalonic Acidemia
 https://www.ncbi.nlm.nih.gov/books/NBK1231
Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Amino+Acid+Metabolism,+Inborn+Errors%5BMAJR%5D%29+AND+%28%28methylmalonic+acidemia%5BTIAB%5D%29+OR+%28methylmalonic+aciduria%5BTIAB%5D%29+OR+%28mma%5BTIAB%5D%29+OR+%28methylmalonicacidemia%5BTIAB%5D%29+OR+%28methylmalonicaciduria%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- METHYLMALONIC ACIDURIA AND HOMOCYSTINURIA, cblD TYPE
 http://omim.org/entry/277410

- METHYLMALONIC ACIDURIA DUE TO METHYLMALONYL-CoA MUTASE DEFICIENCY
 http://omim.org/entry/251000

- METHYLMALONIC ACIDURIA, cblA TYPE
 http://omim.org/entry/251100

- METHYLMALONIC ACIDURIA, cblB TYPE
 http://omim.org/entry/251110

- METHYLMALONYL-CoA EPIMERASE DEFICIENCY
 http://omim.org/entry/251120

Medical Genetics Database from MedGen

- Methylmalonic acidemia

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15293040

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301409

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19058814

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12069539

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15959932

Reprinted from Genetics Home Reference:

Reviewed: July 2011
Published: March 3, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services