Léri-Weill dyschondrosteosis

Léri-Weill dyschondrosteosis is a disorder of bone growth. Affected individuals typically have shortening of the long bones in the arms and legs (mesomelia). As a result of the shortened leg bones, people with Léri-Weill dyschondrosteosis typically have short stature. Most people with the condition also have an abnormality of the wrist and forearm bones called Madelung deformity, which may cause pain and limit wrist movement. This abnormality usually appears in childhood or early adolescence. Other features of Léri-Weill dyschondrosteosis can include increased muscle mass (muscle hypertrophy); bowing of a bone in the lower leg called the tibia; a greater-than-normal angling of the elbow away from the body (increased carrying angle); and a high arched palate.

Léri-Weill dyschondrosteosis occurs in both males and females, although its signs and symptoms tend to be more severe in females. Researchers believe that the more severe features may result from hormonal differences.

Frequency

The prevalence of Léri-Weill dyschondrosteosis is unknown. It is diagnosed more often in females than in males.

Causes

Most cases of Léri-Weill dyschondrosteosis result from changes involving the SHOX gene. The protein produced from this gene plays a role in bone development and is particularly important for the growth and maturation of bones in the arms and legs. The most common cause of Léri-Weill dyschondrosteosis is a deletion of the entire SHOX gene. Other genetic changes that can cause the disorder include mutations in the SHOX gene or deletions of nearby genetic material that normally helps regulate the gene’s activity. These changes reduce the amount of SHOX protein that is produced. A shortage of this protein disrupts normal bone development and growth, which underlies the major features of Léri-Weill dyschondrosteosis.

In affected people who do not have a genetic change involving the SHOX gene, the cause of the condition is unknown.

Inheritance Pattern

Léri-Weill dyschondrosteosis has a pseudoautosomal dominant pattern of inheritance. The SHOX gene is located on both the X and Y chromosomes (sex chromosomes) in an area known as the pseudoautosomal region. Although many genes are unique to either the X or Y chromosome, genes in the pseudoautosomal region are present on both sex chromosomes. As a result, both females (who have two X chromosomes) and
males (who have one X and one Y chromosome) normally have two functional copies of the \textit{SHOX} gene in each cell. The inheritance pattern of Léri-Weill dyschondrosteosis is described as dominant because one missing or altered copy of the \textit{SHOX} gene in each cell is sufficient to cause the disorder. In females, the condition results when the gene is missing or altered on one of the two copies of the X chromosome; in males, it results when the gene is missing or altered on either the X chromosome or the Y chromosome.

A related skeletal disorder called Langer mesomelic dysplasia occurs when both copies of the \textit{SHOX} gene are mutated in each cell. This disorder has signs and symptoms that are similar to, but typically more severe than, those of Léri-Weill dyschondrosteosis.

Other Names for This Condition
- DCO
- dyschondrosteosis
- Leri-Weill dyschondrosteosis
- LWD

Diagnosis & Management

Genetic Testing Information
- What is genetic testing?
 /primer/testing/genetictesting
- Genetic Testing Registry: Leri Weill dyschondrosteosis

Other Diagnosis and Management Resources
- GeneReview: SHOX Deficiency Disorders
 https://www.ncbi.nlm.nih.gov/books/NBK1215

Additional Information & Resources

Health Information from MedlinePlus
- Encyclopedia: Carrying Angle of the Elbow - Excessive
 https://medlineplus.gov/ency/article/002316.htm
- Health Topic: Bone Diseases
 https://medlineplus.gov/bonediseases.html

Genetic and Rare Diseases Information Center
- Leri Weill dyschondrosteosis
 https://rarediseases.info.nih.gov/diseases/3224/leri-weill-dyschondrosteosis
Educational Resources

• Boston Children's Hospital: Madelung's Deformity
 http://www.childrenshospital.org/conditions-and-treatments/conditions/m/madelungs-deformity

• MalaCards: leri-weill dyschondrosteosis
 https://www.malacards.org/card/leri_weill_dyschondrosteosis

• Orphanet: Léri-Weill dyschondrosteosis
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=240

Patient Support and Advocacy Resources

• Human Growth Foundation
 http://hgfound.org/

• International Skeletal Dysplasia Registry, UCLA
 https://www.uclahealth.org/ortho/isdr

• Little People of America
 https://www.lpaonline.org/

• Little People UK
 https://littlepeopleuk.org/

• Resource list from the University of Kansas Medical Center: Dwarfism / Short Stature
 http://www.kumc.edu/gec/support/dwarfism.html

• The MAGIC Foundation
 https://www.magicfoundation.org/

Clinical Information from GeneReviews

• SHOX Deficiency Disorders
 https://www.ncbi.nlm.nih.gov/books/NBK1215

Scientific Articles on PubMed

• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28leri-weill+dyschondrosteosis%5BTIAB%5D%29+OR+%28dyschondrosteosis%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

• LERI-WEILL DYSCHONDROSTEOSIS
 http://omim.org/entry/127300
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21912078

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9590293

Reprinted from Genetics Home Reference:

Reviewed: January 2012
Published: April 16, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services