Langer mesomelic dysplasia

Langer mesomelic dysplasia is a disorder of bone growth. Affected individuals typically have extreme shortening of the long bones in the arms and legs (mesomelia). As a result of the shortened leg bones, people with Langer mesomelic dysplasia have very short stature. A bone in the forearm called the ulna and a bone in the lower leg called the fibula are often underdeveloped or absent, while other bones in the forearm (the radius) and lower leg (the tibia) are unusually short, thick, and curved. Some people with Langer mesomelic dysplasia also have an abnormality of the wrist and forearm bones called Madelung deformity, which may cause pain and limit wrist movement. Additionally, some affected individuals have mild underdevelopment of the lower jaw bone (mandible).

Frequency

The prevalence of Langer mesomelic dysplasia is unknown, although the condition appears to be rare. Several dozen affected individuals have been reported in the scientific literature.

Causes

Langer mesomelic dysplasia results from changes involving the SHOX gene. The protein produced from this gene plays a role in bone development and is particularly important for the growth and maturation of bones in the arms and legs. The most common cause of Langer mesomelic dysplasia is a deletion of the entire SHOX gene. Other genetic changes that can cause the disorder include mutations in the SHOX gene or deletions of nearby genetic material that normally helps regulate the gene’s activity. These changes greatly reduce or eliminate the amount of SHOX protein that is produced. A lack of this protein disrupts normal bone development and growth, which underlies the severe skeletal abnormalities associated with Langer mesomelic dysplasia.

Inheritance Pattern

Langer mesomelic dysplasia has a pseudoautosomal recessive pattern of inheritance. The SHOX gene is located on both the X and Y chromosomes (sex chromosomes) in an area known as the pseudoautosomal region. Although many genes are unique to either the X or Y chromosome, genes in the pseudoautosomal region are present on both sex chromosomes. As a result, both females (who have two X chromosomes) and males (who have one X and one Y chromosome) normally have two functional copies of the SHOX gene in each cell. The inheritance pattern of Langer mesomelic dysplasia is described as recessive because both copies of the SHOX gene in each cell must be missing or altered to cause the disorder. In females, the condition results when the
gene is missing or altered on both copies of the X chromosome; in males, it results when the gene is missing or altered on the X chromosome and the Y chromosome.

A related skeletal disorder called Léri-Weill dyschondrosteosis occurs when one copy of the \textit{SHOX} gene is mutated in each cell. This disorder has signs and symptoms that are similar to, but typically less severe than, those of Langer mesomelic dysplasia.

\textbf{Other Names for This Condition}
\begin{itemize}
 \item dyschondrosteosis homozygous
 \item Langer mesomelic dwarfism
 \item LMD
 \item mesomelic dwarfism of the hypoplastic ulna, fibula, and mandible type
\end{itemize}

\textbf{Diagnosis & Management}

\textbf{Genetic Testing Information}
\begin{itemize}
 \item What is genetic testing?
 /primer/testing/genetictesting
 \item Genetic Testing Registry: Langer mesomelic dysplasia syndrome
\end{itemize}

\textbf{Additional Information & Resources}

\textbf{Health Information from MedlinePlus}
\begin{itemize}
 \item Health Topic: Bone Diseases
 https://medlineplus.gov/bonediseases.html
\end{itemize}

\textbf{Genetic and Rare Diseases Information Center}
\begin{itemize}
 \item Langer mesomelic dysplasia
\end{itemize}

\textbf{Educational Resources}
\begin{itemize}
 \item Boston Children's Hospital: Madelung's Deformity
 http://www.childrenshospital.org/conditions-and-treatments/conditions/m/madelungs-deformity
 \item MalaCards: langer mesomelic dysplasia
 https://www.malacards.org/card/langer_mesomelic_dysplasia
 \item Orphanet: Langer mesomelic dysplasia
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=2632
\end{itemize}
Patient Support and Advocacy Resources

- Human Growth Foundation
 https://www.hgfound.org/
- International Skeletal Dysplasia Registry, UCLA
 https://www.uclahealth.org/ortho/isdr
- Little People of America
 https://www.lpaonline.org/
- Little People UK
 https://littlepeopleuk.org/
- Resource list from the University of Kansas Medical Center: Dwarfism / Short Stature
 http://www.kumc.edu/gec/support/dwarfism.html
- The MAGIC Foundation
 https://www.magicfoundation.org/

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28langer%5BTIAB%5D%29+AND+%28mesomelic%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3600+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- LANGER MESOMELIC DYSPLASIA
 http://omim.org/entry/249700

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17935511
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17394206
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12116253
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15214013

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12116254

Reprinted from Genetics Home Reference:

Reviewed: January 2012
Published: April 28, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services