Infantile-onset ascending hereditary spastic paralysis

Infantile-onset ascending hereditary spastic paralysis is one of a group of genetic disorders known as hereditary spastic paraplegias. These disorders are characterized by progressive muscle stiffness (spasticity) and eventual paralysis of the lower limbs (paraplegia). The spasticity and paraplegia result from degeneration (atrophy) of motor neurons, which are specialized nerve cells in the brain and spinal cord that control muscle movement. Hereditary spastic paraplegias are divided into two types: pure and complicated. The pure types involve only the lower limbs, while the complicated types involve additional areas of the nervous system, affecting the upper limbs and other areas of the body. Infantile-onset ascending hereditary spastic paralysis starts as a pure hereditary spastic paraplegia, with spasticity and weakness in the legs only, but as the disorder progresses, the muscles in the arms, neck, and head become involved and features of the disorder are more characteristic of the complicated type.

Affected infants are typically normal at birth, then within the first 2 years of life, the initial symptoms of infantile-onset ascending hereditary spastic paralysis appear. Early symptoms include exaggerated reflexes (hyperreflexia) and recurrent muscle spasms in the legs. As the condition progresses, affected children develop abnormal tightness and stiffness in the leg muscles and weakness in the legs and arms. Over time, muscle weakness and stiffness travels up (ascends) the body from the legs to the head and neck. Muscles in the head and neck usually weaken during adolescence; symptoms include slow eye movements and difficulty with speech and swallowing. Affected individuals may lose the ability to speak (anarthria). The leg and arm muscle weakness can become so severe as to lead to paralysis; as a result affected individuals require wheelchair assistance by late childhood or early adolescence. Intelligence is not affected in this condition.

A condition called juvenile primary lateral sclerosis shares many of the features of infantile-onset ascending hereditary spastic paralysis. Both conditions have the same genetic cause and significantly impair movement beginning in childhood; however, the pattern of nerve degeneration is different. Because of their similarities, these conditions are sometimes considered the same disorder.

Frequency

Infantile-onset ascending hereditary spastic paralysis is a rare disorder, with at least 30 cases reported in the scientific literature.

Causes

Infantile-onset ascending hereditary spastic paralysis is caused by mutations in the *ALS2* gene. This gene provides instructions for making the alsin protein. Alsin is
produced in a wide range of tissues, with highest amounts in the brain, particularly in motor neurons. Alsin turns on (activates) multiple proteins called GTPases that convert a molecule called GTP into another molecule called GDP. GTPases play important roles in several cell processes. The GTPases that are activated by alsin are involved in the proper placement of the various proteins and fats that make up the cell membrane, the transport of molecules from the cell membrane to the interior of the cell (endocytosis), and the development of specialized structures called axons and dendrites that project from neurons and are essential for the transmission of nerve impulses.

Mutations in the \textit{ALS2} gene alter the instructions for making alsin, often resulting in the production of an abnormally short alsin protein that is unstable and rapidly broken down. It is unclear exactly how \textit{ALS2} gene mutations cause infantile-onset ascending hereditary spastic paralysis. Research suggests that a lack of alsin and the subsequent loss of GTPase functions, such as endocytosis and the development of axons and dendrites, contribute to the progressive atrophy of motor neurons that is characteristic of this condition.

\textbf{Inheritance Pattern}

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

\textbf{Other Names for This Condition}

- IAHSP
- infantile-onset ascending hereditary spastic paraplegia
- infantile onset ascending spastic paralysis

\textbf{Diagnosis & Management}

\textbf{Genetic Testing Information}

- What is genetic testing? /primer/testing/genetictesting

\textbf{Research Studies from ClinicalTrials.gov}

- ClinicalTrials.gov https://clinicaltrials.gov/ct2/results?cond=%22infantile-onset+ascending+hereditary+spastic+paralysis%22
Other Diagnosis and Management Resources

• GeneReview: ALS2-Related Disorders
 https://www.ncbi.nlm.nih.gov/books/NBK1243

Additional Information & Resources

Health Information from MedlinePlus

• Health Topic: Degenerative Nerve Diseases
 https://medlineplus.gov/degenerativenervediseases.html

• Health Topic: Neuromuscular Disorders
 https://medlineplus.gov/neuromusculardisorders.html

Genetic and Rare Diseases Information Center

• Infantile-onset ascending hereditary spastic paralysis
 https://rarediseases.info.nih.gov/diseases/4914/infantile-onset-ascending-
 hereditary-spastic-paralysis

Additional NIH Resources

• National Institute of Neurological Disorders and Stroke: Hereditary Spastic
 Paraplegia Information Page
 https://www.ninds.nih.gov/Disorders/All-Disorders/Hereditary-spastic-paraplegia-
 Information-Page

• National Institute of Neurological Disorders and Stroke: Motor Neuron Diseases
 Information Page
 https://www.ninds.nih.gov/Disorders/All-Disorders/Motor-neuron-diseases-
 Information-Page

Educational Resources

• MalaCards: infantile-onset ascending hereditary spastic paralysis
 https://www.malacards.org/card/infantile_onsetAscendingHereditarySpasticParalysis

• Merck Manual Consumer Version: Hereditary Spastic Paraparesis
 spinal-cord-disorders/hereditary-spastic-paraparesis

• National Health Service (NHS): Hereditary Spastic Paraplegia (UK)
 https://www.nhs.uk/conditions/hereditary-spastic-paraplegia/

• Orphanet: Infantile-onset ascending hereditary spastic paralysis
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=293168
Patient Support and Advocacy Resources

- Motor Neurone Disease Association (UK)
 https://www.mndassociation.org/

- National Organization for Rare Disorders (NORD): Hereditary Spastic Paraplegia
 https://rarediseases.org/rare-diseases/hereditary-spastic-paraplegia/

- RareConnect: Hereditary Spastic Paraplegia
 https://www.rareconnect.org/en/community/hereditary-spastic-paraplegia

- Spastic Paraplegia Foundation
 https://sp-foundation.org/

Clinical Information from GeneReviews

- ALS2-Related Disorders
 https://www.ncbi.nlm.nih.gov/books/NBK1243

Scientific Articles on PubMed

- PubMed
 +hereditary+spastic+paralysis%29+OR+%28infantile-onset+ascending+hereditary
 +spastic+paraplegia%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D

Catalog of Genes and Diseases from OMIM

- SPASTIC PARALYSIS, INFANTILE-ONSET ASCENDING
 http://omim.org/entry/607225

Sources for This Summary

- Eker HK, Unlü SE, Al-Salmi F, Crosby AH. A novel homozygous mutation in ALS2 gene in four
 siblings with infantile-onset ascending hereditary spastic paralysis. Eur J Med Genet. 2014 May-
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24704789

 Plauchu H, Leuzzi V, Ponzone A, Boespflug-Tanguy O, Bertini E. Infantile ascending hereditary
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12601111

 Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH,
 Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle;
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301421
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24144828

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24315819

Reprinted from Genetics Home Reference:

Reviewed: April 2016
Published: June 25, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services