Inclusion body myopathy 2

Inclusion body myopathy 2 is a condition that primarily affects skeletal muscles, which are muscles that the body uses for movement. This disorder causes muscle weakness that appears in late adolescence or early adulthood and worsens over time.

The first sign of inclusion body myopathy 2 is weakness of a muscle in the lower leg called the tibialis anterior. This muscle helps control up-and-down movement of the foot. Weakness in the tibialis anterior alters the way a person walks and makes it difficult to run and climb stairs. As the disorder progresses, weakness also develops in muscles of the upper legs, hips, shoulders, and hands. Unlike most forms of myopathy, inclusion body myopathy 2 usually does not affect the quadriceps, which are a group of large muscles at the front of the thigh. This condition also does not affect muscles of the eye or heart, and it does not cause neurological problems. Weakness in leg muscles makes walking increasingly difficult, and most people with inclusion body myopathy 2 require wheelchair assistance within 20 years after signs and symptoms appear.

People with the characteristic features of inclusion body myopathy 2 have been described in several different populations. When the condition was first reported in Japanese families, researchers called it distal myopathy with rimmed vacuoles (DMRV) or Nonaka myopathy. When a similar disorder was discovered in Iranian Jewish families, researchers called it rimmed vacuole myopathy or hereditary inclusion body myopathy (HIBM). It has since become clear that these conditions are variations of a single disorder caused by mutations in the same gene.

Frequency

More than 200 people with inclusion body myopathy 2 have been reported. Most are of Iranian Jewish descent; the condition affects an estimated 1 in 1,500 people in this population. Additionally, at least 15 people in the Japanese population have been diagnosed with this disorder. Inclusion body myopathy 2 has also been found in several other ethnic groups worldwide.

Causes

Mutations in the GNE gene cause inclusion body myopathy 2. The GNE gene provides instructions for making an enzyme found in cells and tissues throughout the body. This enzyme is involved in a chemical pathway that produces sialic acid, which is a simple sugar that attaches to the ends of more complex molecules on the surface of cells. By modifying these molecules, sialic acid influences a wide variety of cellular functions including cell movement (migration), attaching cells to one another (adhesion), signaling between cells, and inflammation.
The mutations responsible for inclusion body myopathy 2 reduce the activity of the enzyme produced from the GNE gene, which decreases the production of sialic acid. As a result, less of this simple sugar is available to attach to cell surface molecules. Researchers are working to determine how a shortage of sialic acid leads to progressive muscle weakness in people with inclusion body myopathy 2. Sialic acid is important for the normal function of many different cells and tissues, so it is unclear why the signs and symptoms of this disorder appear to be limited to the skeletal muscles.

Inheritance Pattern
This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition
- Distal myopathy with rimmed vacuoles
- DMRV
- Hereditary inclusion body myopathy
- HIBM
- IBM2
- Inclusion body myopathy, autosomal recessive
- Inclusion body myopathy, quadriceps-sparing
- Nonaka myopathy
- QSM
- Rimmed vacuole myopathy

Diagnosis & Management

Genetic Testing Information
- What is genetic testing? [primer/testing/genetictesting]

Research Studies from ClinicalTrials.gov
- ClinicalTrials.gov [https://clinicaltrials.gov/ct2/results?cond=%22inclusion+body+myopathy+2%22]
Other Diagnosis and Management Resources

• GeneReview: GNE-Related Myopathy
 https://www.ncbi.nlm.nih.gov/books/NBK1262

Additional Information & Resources

Health Information from MedlinePlus

• Health Topic: Muscle Disorders
 https://medlineplus.gov/muscledisorders.html

Genetic and Rare Diseases Information Center

• Inclusion body myopathy 2

Additional NIH Resources

• National Institute of Neurological Disorders and Stroke: Myopathy Information Page
 https://www.ninds.nih.gov/Disorders/All-Disorders/Myopathy-Information-Page

Educational Resources

• MalaCards: nonaka myopathy
 https://www.malacards.org/card/nonaka_myopathy

• Neuromuscular Disease Center, Washington University
 https://neuromuscular.wustl.edu/musdist/distal.html#hibmr

• Orphanet: GNE myopathy
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=602

Patient Support and Advocacy Resources

• Muscular Dystrophy Association: Facts About Rare Muscular Dystrophies
 https://www.mda.org/sites/default/files/publications/Facts_RareMDs_P-214_0.pdf

• Muscular Dystrophy Canada
 http://www.muscle.ca/

• Muscular Dystrophy UK
 https://www.musculardystrophyuk.org/

• National Organization for Rare Disorders (NORD): Distal Myopathy
 https://rarediseases.org/rare-diseases/distal-myopathy/

• Resource list from the University of Kansas Medical Center: Muscular Dystrophy/Atrophy
 http://www.kumc.edu/gec/support/muscular.html
Clinical Information from GeneReviews

- GNE-Related Myopathy
 https://www.ncbi.nlm.nih.gov/books/NBK1262

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28inclusion+body+myopathy+5BTIAB%5D%29+OR+%28dmrv%5BTIAB%5D%29+OR+%28ibm2%5BTIAB%5D%29+OR+%28autosomal+recessive+inclusion+body+myopathy%5BTIAB%5D%29+OR+%28quadriceps-sparing+inclusion+body+myopathy%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- NONAKA MYOPATHY
 http://omim.org/entry/605820

Medical Genetics Database from MedGen

- Inclusion body myopathy 2

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12743242

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11528398

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11916006

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18646567
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949308/

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/18769255
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16155432

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16550921

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12473753

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15676110

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301439

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15136692

Reprinted from Genetics Home Reference:

Reviewed: December 2008
Published: June 11, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services