Hypophosphatasia

Hypophosphatasia is an inherited disorder that affects the development of bones and teeth. This condition disrupts a process called mineralization, in which minerals such as calcium and phosphorus are deposited in developing bones and teeth. Mineralization is critical for the formation of bones that are strong and rigid and teeth that can withstand chewing and grinding.

The signs and symptoms of hypophosphatasia vary widely and can appear anywhere from before birth to adulthood. The most severe forms of the disorder tend to occur before birth and in early infancy. Hypophosphatasia weakens and softens the bones, causing skeletal abnormalities similar to another childhood bone disorder called rickets. Affected infants are born with short limbs, an abnormally shaped chest, and soft skull bones. Additional complications in infancy include poor feeding and a failure to gain weight, respiratory problems, and high levels of calcium in the blood (hypercalcemia), which can lead to recurrent vomiting and kidney problems. These complications are life-threatening in some cases.

The forms of hypophosphatasia that appear in childhood or adulthood are typically less severe than those that appear in infancy. Early loss of primary (baby) teeth is one of the first signs of the condition in children. Affected children may have short stature with bowed legs or knock knees, enlarged wrist and ankle joints, and an abnormal skull shape. Adult forms of hypophosphatasia are characterized by a softening of the bones known as osteomalacia. In adults, recurrent fractures in the foot and thigh bones can lead to chronic pain. Affected adults may lose their secondary (adult) teeth prematurely and are at increased risk for joint pain and inflammation.

The mildest form of this condition, called odontohypophosphatasia, only affects the teeth. People with this disorder typically experience abnormal tooth development and premature tooth loss, but do not have the skeletal abnormalities seen in other forms of hypophosphatasia.

Frequency

Severe forms of hypophosphatasia affect an estimated 1 in 100,000 newborns. Milder cases, such as those that appear in childhood or adulthood, probably occur more frequently.

Hypophosphatasia has been reported worldwide in people of various ethnic backgrounds. This condition appears to be most common in white populations. It is particularly frequent in a Mennonite population in Manitoba, Canada, where about 1 in 2,500 infants is born with severe features of the condition.
Causes

Mutations in the *ALPL* gene cause hypophosphatasia. This gene provides instructions for making an enzyme called tissue-nonspecific alkaline phosphatase (TNSALP), which plays an essential role in mineralization of the skeleton and teeth. Mutations in the *ALPL* gene lead to the production of an abnormal version of TNSALP that cannot participate effectively in the mineralization process. A shortage of TNSALP allows several other substances, which are normally processed by the enzyme, to build up abnormally in the body. Researchers believe that a buildup of one of these compounds, inorganic pyrophosphate (PPi), underlies the defective mineralization of bones and teeth in people with hypophosphatasia.

ALPL gene mutations that almost completely eliminate the activity of TNSALP usually result in the more severe forms of hypophosphatasia. Other mutations, which reduce but do not eliminate the activity of the enzyme, often cause the milder forms of the condition.

Inheritance Pattern

The severe forms of hypophosphatasia that appear early in life are inherited in an autosomal recessive pattern. Autosomal recessive inheritance means that two copies of the gene in each cell are altered. Most often, the parents of an individual with an autosomal recessive disorder each carry one copy of the altered gene but do not show signs and symptoms of the disorder.

Milder forms of hypophosphatasia can have either an autosomal recessive or an autosomal dominant pattern of inheritance. Autosomal dominant inheritance means that one copy of the altered gene in each cell is sufficient to cause the disorder.

Other Names for This Condition

- Deficiency of alkaline phosphatase
- Phosphoethanolaminuria

Diagnosis & Management

Genetic Testing Information

- What is genetic testing?
 /primer/testing/genetictesting
- Genetic Testing Registry: Adult hypophosphatasia
- Genetic Testing Registry: Childhood hypophosphatasia
 https://www.ncbi.nlm.nih.gov/gtr/conditions/C0220743/
• Genetic Testing Registry: Hypophosphatasia

• Genetic Testing Registry: Infantile hypophosphatasia

Research Studies from ClinicalTrials.gov
• ClinicalTrials.gov
 https://clinicaltrials.gov/ct2/results?cond=%22hypophosphatasia%22

Other Diagnosis and Management Resources
• GeneReview: Hypophosphatasia
 https://www.ncbi.nlm.nih.gov/books/NBK1150

• MedlinePlus Encyclopedia: Osteomalacia
 https://medlineplus.gov/ency/article/000376.htm

Additional Information & Resources
 Health Information from MedlinePlus
 • Encyclopedia: Osteomalacia
 https://medlineplus.gov/ency/article/000376.htm
 • Health Topic: Bone Diseases
 https://medlineplus.gov/bonediseases.html
 • Health Topic: Metabolic Disorders
 https://medlineplus.gov/metabolicdisorders.html

 Genetic and Rare Diseases Information Center
 • Childhood hypophosphatasia
 https://rarediseases.info.nih.gov/diseases/8735/childhood-hypophosphatasia
 • Hypophosphatasia
 https://rarediseases.info.nih.gov/diseases/6734/hypophosphatasia

 Educational Resources
 • MalaCards: hypophosphatasia
 https://www.malacards.org/card/hypophosphatasia
 • Merck Manual for Healthcare Professionals
 https://www.merckmanuals.com/professional/pediatrics/connective-tissue-
 disorders-in-children/cutis-laxa
 • Orphanet: Hypophosphatasia
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=436
Patient Support and Advocacy Resources

- Metabolic Support UK
 https://www.metabolicsupportuk.org/
- National Organization for Rare Disorders
 https://rarediseases.org/rare-diseases/hypophosphatiasia/
- Osteogenesis Imperfecta Foundation: Hypophosphatasia
 http://www.oif.org/site/PageServer?pagename=Hypophosphatasia
- Resource list from the University of Kansas Medical Center
 http://www.kumc.edu/gec/support/metaboli.html
- Soft Bones
 https://www.softbones.org/
- The MAGIC Foundation
 https://www.magicfoundation.org/Growth-Disorders/Hypophosphatasia/

Clinical Information from GeneReviews

- Hypophosphatiasia
 https://www.ncbi.nlm.nih.gov/books/NBK1150

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28Hypophosphatasia%5BMAJR%5D%29+AND+%28hypophosphatiasia%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- HYPOPHOSPHATASIA, ADULT
 http://omim.org/entry/146300
- HYPOPHOSPHATASIA, CHILDHOOD
 http://omim.org/entry/241510
- HYPOPHOSPHATASIA, INFANTILE
 http://omim.org/entry/241500

Medical Genetics Database from MedGen

- Adult hypophosphatasia
- Childhood hypophosphatasia
• Hypophosphatasia

• Infantile hypophosphatasia

Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17229666

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/10737975

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23858621

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26893260

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/7988481

Reprinted from Genetics Home Reference:

Reviewed: March 2018
Published: March 19, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services