Hypochromic microcytic anemia with iron overload

Hypochromic microcytic anemia with iron overload is a condition that impairs the normal transport of iron in cells. Iron is an essential component of hemoglobin, which is the substance that red blood cells use to carry oxygen to cells and tissues throughout the body. In this condition, red blood cells cannot access iron in the blood, so there is a decrease of red blood cell production (anemia) that is apparent at birth. The red blood cells that are produced are abnormally small (microcytic) and pale (hypochromic). Hypochromic microcytic anemia with iron overload can lead to pale skin (pallor), tiredness (fatigue), and slow growth.

In hypochromic microcytic anemia with iron overload, the iron that is not used by red blood cells accumulates in the liver, which can impair its function over time. The liver problems typically become apparent in adolescence or early adulthood.

Frequency

Hypochromic microcytic anemia with iron overload is likely a rare disorder; at least five affected families have been reported in the scientific literature.

Causes

Mutations in the SLC11A2 gene cause hypochromic microcytic anemia with iron overload. The SLC11A2 gene provides instructions for making a protein called divalent metal transporter 1 (DMT1). The DMT1 protein is found in all tissues, where its primary role is to transport positively charged iron atoms (ions) within cells. In a section of the small intestine called the duodenum, the DMT1 protein is located within finger-like projections called microvilli. These projections absorb nutrients from food as it passes through the intestine and then release them into the bloodstream. In all other cells, including immature red blood cells called erythroblasts, DMT1 is located in the membrane of endosomes, which are specialized compartments that are formed at the cell surface to carry proteins and other molecules to their destinations within the cell. DMT1 transports iron from the endosomes to the cytoplasm so it can be used by the cell.

SLC11A2 gene mutations lead to reduced production of the DMT1 protein, decreased protein function, or impaired ability of the protein to get to the correct location in cells. In erythroblasts, a shortage of DMT1 protein diminishes the amount of iron transported within cells to attach to hemoglobin. As a result, the development of healthy red blood cells is impaired, leading to a shortage of these cells. In the duodenum, a shortage of DMT1 protein decreases iron absorption. To compensate, cells increase production of functional DMT1 protein, which increases iron absorption. Because the red blood cells cannot use the iron that is absorbed, it accumulates in the liver, eventually impairing
liver function. The lack of involvement of other tissues in hypochromic microcytic anemia with iron overload is likely because these tissues have other ways to transport iron.

Inheritance Pattern

This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents of an individual with an autosomal recessive condition each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.

Other Names for This Condition

- microcytic anemia and hepatic iron overload
- microcytic anemia with liver iron overload

Diagnosis & Management

Genetic Testing Information

- What is genetic testing? [primer/testing/genetictesting](#)
- Genetic Testing Registry: Hypochromic microcytic anemia with iron overload [https://www.ncbi.nlm.nih.gov/gtr/conditions/C3806153/](#)

Additional Information & Resources

Health Information from MedlinePlus

- Health Topic: Anemia [https://medlineplus.gov/anemia.html](#)
- Health Topic: Hemochromatosis [https://medlineplus.gov/hemochromatosis.html](#)

Genetic and Rare Diseases Information Center

- Hypochromic microcytic anemia with iron overload [https://rarediseases.info.nih.gov/diseases/12360/hypochromic-microcytic-anemia-with-iron-overload](#)

Additional NIH Resources

Educational Resources

- Ann & Robert H. Lurie Children's Hospital of Chicago: Anemia
 https://www.luriechildrens.org/en/specialties-conditions/anemia/
- Children's Hospital of Philadelphia: Anemia
 https://www.chop.edu/conditions-diseases/anemia
- Harvard University Information Center for Sickle Cell and Thalassemic Disorders: Disordered Iron Metabolism
 http://sickle.bwh.harvard.edu/menu_iron.html
- MalaCards: hypochromic microcytic anemia with iron overload
 https://www.malacards.org/card/hypochromic_microcytic_anemia_with_iron_overload
- Merck Manual Home Edition: Overview of Anemia
 https://www.merckmanuals.com/home/blood-disorders/anemia/overview-of-anemia
- Merck Manual Home Edition: Overview of Iron Overload
 https://www.merckmanuals.com/home/blood-disorders/iron-overload/overview-of-iron-overload
- Orphanet: Microcytic anemia with liver iron overload
 https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=83642

Patient Support and Advocacy Resources

- American Liver Foundation
 https://liverfoundation.org/
- American Society of Hematology: Patient Groups
 https://www.hematology.org/Patients/Groups.aspx

Scientific Articles on PubMed

- PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28%28microcytic+anemia%5BTIAB%5D%29+AND+%28iron+overload%5BTIBT%5D%29+AND+N%28sideroblastic%5BTIBT%5D%29%29+AND+english%5BTIBT%5D+AND+human%5Bmh%5D

Catalog of Genes and Diseases from OMIM

- ANEMIA, HYPOCHROMIC MICROCYTIC, WITH IRON OVERLOAD 1
 http://omim.org/entry/206100

Medical Genetics Database from MedGen

- Hypochromic microcytic anemia with iron overload
Sources for This Summary

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/21871825

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16439678

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19786204

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16160008

 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16584902

Reprinted from Genetics Home Reference:

Reviewed: November 2014
Published: December 10, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services