Hyperkalemic periodic paralysis

Hyperkalemic periodic paralysis is a condition that causes episodes of extreme muscle weakness or paralysis, usually beginning in infancy or early childhood. Most often, these episodes involve a temporary inability to move muscles in the arms and legs. Episodes tend to increase in frequency until mid-adulthood, after which they occur less frequently in many people with the condition. Factors that can trigger attacks include rest after exercise, potassium-rich foods such as bananas and potatoes, stress, fatigue, alcohol, pregnancy, exposure to hot or cold temperatures, certain medications, and periods without food (fasting). Muscle strength usually returns to normal between attacks, although many affected people continue to experience mild stiffness (myotonia), particularly in muscles of the face and hands.

Most people with hyperkalemic periodic paralysis have increased levels of potassium in their blood (hyperkalemia) during attacks. Hyperkalemia results when the weak or paralyzed muscles release potassium ions into the bloodstream. In other cases, attacks are associated with normal blood potassium levels (normokalemia). Ingesting potassium can trigger attacks in affected individuals, even if blood potassium levels do not go up.

Frequency

Hyperkalemic periodic paralysis affects an estimated 1 in 200,000 people.

Causes

Mutations in the SCN4A gene can cause hyperkalemic periodic paralysis. The SCN4A gene provides instructions for making a protein that plays an essential role in muscles used for movement (skeletal muscles). For the body to move normally, these muscles must tense (contract) and relax in a coordinated way. One of the changes that helps trigger muscle contractions is the flow of positively charged atoms (ions), including sodium, into muscle cells. The SCN4A protein forms channels that control the flow of sodium ions into these cells.

Mutations in the SCN4A gene alter the usual structure and function of sodium channels. The altered channels stay open too long or do not stay closed long enough, allowing more sodium ions to flow into muscle cells. This increase in sodium ions triggers the release of potassium from muscle cells, which causes more sodium channels to open and stimulates the flow of even more sodium ions into these cells. These changes in ion transport reduce the ability of skeletal muscles to contract, leading to episodes of muscle weakness or paralysis.
In 30 to 40 percent of cases, the cause of hyperkalemic periodic paralysis is unknown. Changes in other genes, which have not been identified, likely cause the disorder in these cases.

**Inheritance Pattern**

This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder.

**Other Names for This Condition**

- adynamia episodica hereditaria
- familial hyperkalemic periodic paralysis
- Gamstorp disease
- Gamstorp episodic adynamy
- hyperKPP
- hyperPP
- primary hyperkalemic periodic paralysis

**Diagnosis & Management**

**Genetic Testing Information**

- What is genetic testing? [primer/testing/genetictesting](https://primer/testing/genetictesting)

**Research Studies from ClinicalTrials.gov**

- ClinicalTrials.gov [https://clinicaltrials.gov/ct2/results?cond=%22hyperkalemic+periodic+paralysis%22](https://clinicaltrials.gov/ct2/results?cond=%22hyperkalemic+periodic+paralysis%22)

**Other Diagnosis and Management Resources**

- Periodic Paralysis International: How is Periodic Paralysis Diagnosed? [http://hkpp.org/patients/do-i-have-pp](http://hkpp.org/patients/do-i-have-pp)
Additional Information & Resources

Health Information from MedlinePlus

- Encyclopedia: Hyperkalemic Periodic Paralysis
  https://medlineplus.gov/ency/article/000316.htm
- Health Topic: Muscle Disorders
  https://medlineplus.gov/muscledisorders.html
- Health Topic: Paralysis
  https://medlineplus.gov/paralysis.html

Genetic and Rare Diseases Information Center

- Hyperkalemic periodic paralysis

Additional NIH Resources

- National Institute of Neurological Disorders and Stroke
  https://www.ninds.nih.gov/Disorders/All-Disorders/Familial-Periodic-Paralyses-Information-Page

Educational Resources

- MalaCards: hyperkalemic periodic paralysis
  https://www.malacards.org/card/hyperkalemic_periodic_paralysis
- Merck Manual Consumer Version
- Neuromuscular Disease Center, Washington University
  https://neuromuscular.wustl.edu/mother/activity.html#hrpp
- Orphanet: Hyperkalemic periodic paralysis
  https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=EN&Expert=682

Patient Support and Advocacy Resources

- Muscular Dystrophy Association
  https://www.mda.org/disease/periodic-paralyses
- Periodic Paralysis Association
  http://www.periodicparalysis.org/
- Periodic Paralysis International
  http://hkpp.org/
- Resource List from the University of Kansas Medical Center
  http://www.kumc.edu/gec/support/periodic.html
Clinical Information from GeneReviews

- Hyperkalemic Periodic Paralysis
  https://www.ncbi.nlm.nih.gov/books/NBK1496

Scientific Articles on PubMed

- PubMed
  https://www.ncbi.nlm.nih.gov/pubmed?term=%28hyperkalemic+periodic+paralysis%5BTIAB%5D%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+2880+days%22%5Bdp%5D

Catalog of Genes and Diseases from OMIM

- HYPERKALEMIC PERIODIC PARALYSIS
  http://omim.org/entry/170500

Medical Genetics Database from MedGen

- Familial hyperkalemic periodic paralysis

Sources for This Summary

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12117476

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19185183

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20237798
  Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2883924/

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17395131

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/17139526

  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15534250
  
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16195244

  
  Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301669


Reviewed: February 2019
Published: August 20, 2019

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services